METHOD: A non-systemic search was performed to review articles relevant to CYP2S1 in literature. This review will update the findings related to the expression and regulation of CYP2S1 gene and protein, substrate profiles and metabolism mechanisms, genetic polymorphisms, and their association with diseases.
RESULTS: The expression of CYP2S1 was mainly in the epithelium of portal of entry organs such as respiratory and gastrointestinal tract. Aryl Hydrocarbon Receptor (AHR) is believed to be partly involved in the induction of CYP2S1. CYP2S1 was found to activate and deactivate pro-drugs which resulted in toxicity and detoxification of carcinogens. The current knowledge of the endogenous functions of CYP2S1 is largely related to cell proliferation and lipid metabolisms. Several polymorphic alleles of CYP2S1 have been reported and documented to date.
CONCLUSION: Molecular-based investigations should be performed to better understand the regulation mechanism of CYP2S1 in various cells and tissues. It is pivotal to establish optimum expression and incubation systems in vitro to elucidate the substrate specificity of CYP2S1 and characterise the genetic consequences of variant CYP2S1 in vitro.
METHODS: Articles that report genetic polymorphisms, genotype frequencies and allele frequencies in CYP2C9, CYP2C19, CYP2D6 and CYP3A5 were retrieved from the PubMed database.
RESULTS AND DISCUSSIONS: A total of 86 studies that fulfilled the eligibility criteria representing different ethnic populations of SEEA, ie, Burmese, Chinese, Japanese, Karen ethnic minority, Korean, Malaysian, Philippino, Singaporean, Taiwanese, Thai, Indonesian, and Vietnamese, were included in the analysis. In general, the genotype frequencies across SEEA populations are comparable. The CYP2C9*1/*1 (69.3%-99.1%), *1/*3 (2.3%-20.1%) and *3/*3 (0%-2.2%) genotypes are reported in most SEEA populations. Six major CYP2C19 genotypes, ie, *1/*1 (6.25%-88.07%), *1/*2 (21.5%-86.46%), *1/*3 (0.8%-15.8%), *2/*2 (3.4%-14.5%), *2/*3 (0%-7.3%) and *3/*3 (0%-10.2%), are reported in most SEEA populations. Major CYP2D6 genotypes include *10/*10 (0%-69.6%), *1/*1 (0%-61.21%) and *1/*10 (0%-62.0%). Major CYP3A5 genotypes are *3/*3 (2.0%-71.4%), *1/*3 (16.0%-57.1%) and *1/*1 (0%-82.0%). Genotyping of abnormal genotypes of CYP2C9 (*1/*3), CYP2C19 (*1/*2, *1/*3), CYP3A5 (*1/*3) and CYP2D6 (*5/*10) associated with IM (Intermediate metabolizer) status, may be clinically beneficial in SEEA populations. Similarly, with CYP2C19 (*2/*2, *2/*3), CYP2D6 (*5/*5 ) linked to PM (Poor metabolizer), CYP2D6 (*10/*10, *1/*5 and to lesser extent *1/*4, *2/*5, *10/*41, *10/*49, *10/*14) and CYP3A5 (*1/*1) associated with EM (extensive metabolizer).
WHAT IS NEW AND CONCLUSION: Sufficient number of studies has provided comparable results in general. This review suggests that comparable genotype frequencies of CYP2C9, CYP2C19, CYP2D6 and CYP3A5 exist among the SEEA populations. It is noted that more research data are reported from East Asians compared with South-East Asians. Concerned efforts are required to establish partnerships among SEEA countries that will ensure sufficient data from South-East Asian countries which will assist in establishing the databases for SEEA populations.
METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants.
RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies.
CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.
RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.
CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.
OBJECTIVE: This in vitro study investigated the inhibitory effects of agarwood tea aqueous extract on the eight major human drug-metabolising cytochrome P450 (CYP) enzyme activities.
METHODS: High-throughput fluorescence-based Vivid® CYP450 screening kits were employed to obtain the enzyme activities before and after incubation with agarwood tea aqueous extract.
RESULTS: Agarwood aqueous extract potently inhibited CYP2C9, CYP2D6, and CYP3A4 activities with Ki values of 5.1, 34.5, and 20.3μg/ml, respectively. The most likely inhibition mode responsible for these inhibitions was non-competitive inhibition. On the other hand, at 1000μg/ml, agarwood tea aqueous extract negligibly inhibited CYP1A2, CYP2B6, CYP2C19, CYP2E1, and CYP3A5 activities.
CONCLUSION: These findings can be used to design additional in vitro investigations using clinical relevant drug substrates for CYP2C9, CYP2D6, and CYP3A4. Subsequently, future studies can be conducted to determine potential interactions between agarwood tea aqueous extract and CYP using in vivo models.