Agarose gel electrophoresis is the standard method that is used to separate, identify, and purify DNA fragments. However, this method is time-consuming and capable of separating limited range of fragments. A new technique of gel preparation was developed to improve the DNA fragment analysis via electrophoresis.
Sulfanilic acid (4-aminobenzenesulfonic acid) is a sulfonated aromatic amine widely used in chemical industries for synthesis of various organic dyes and sulfa drugs. There are quite a few microbial co-cultures or single isolates capable of completely degrading this compound. Novosphingobium resinovorum SA1 was the first single bacterium which could utilize sulfanilic acid as its sole carbon, nitrogen and sulfur source. The strain has versatile catabolic routes for the bioconversion of numerous other aromatic compounds. Here, the complete genome sequence of the N. resinovorum SA1 strain is reported. The genome consists of a circular chromosome of 3.8 Mbp and four extrachromosomal elements between 67 and 1 759.8 kbp in size. Three alternative 3-ketoadipate pathways were identified on the plasmids. Sulfanilic acid is decomposed via a modified 3-ketoadipate pathway and the oxygenases involved form a phylogenetically separate branch on the tree. Sequence analysis of these elements might provide a genetic background for deeper insight into the versatile catabolic metabolism of various aromatic xenobiotics, including sulfanilic acid and its derivatives. Moreover, this is also a good model strain for understanding the role and evolution of multiple genetic elements within a single strain.
For rapid identification of methicillin-resistant Staphylococcus aureus, molecular methods are generally targeting mecA and species-specific genes. Sa442 DNA fragment is a popular species-specific target. However, recently, there have been few reports on S. aureus isolates that are negative for Sa442 fragment; therefore, use of single gene or DNA-fragment-specific polymerase chain reaction (PCR) for identification of microbial isolate may result in misidentification. This study includes CoA gene in parallel with Sa442 marker for identification of S. aureus. This further improves the specificity of the assay by checking for 2 determinants simultaneously for the identification of S. aureus and can prevent misidentification of S. aureus isolates lacking Sa442 DNA fragment. In this study, the newly developed triplex real-time PCR assay was compared with a quadruplex conventional gel-based PCR assay using the same primer sets in both assays. The dual-labeled TaqMan probes (ProOligo, France) for these primers were specifically designed and used in a real-time PCR assay. The clinical isolates (n = 152) were subjected to both PCR assays. The results obtained from both assays proved that the primer and probe sets were 100% sensitive and 100% specific for identification of S. aureus and detection of methicillin resistance. This triplex real-time PCR assay represents a rapid and powerful method for S. aureus identification and detection of methicillin resistance.
We developed a multiplex enzyme-based electrochemical genosensor for sequence-specific detection of multiplex linear-after-the-exponential-PCR amplicons that targeted toxigenic Vibrio cholerae O1 and O139 using novel screen-printed gold electrode bisensors.
Amplified fragment length polymorphism (AFLP) is a recently developed, PCR-based high resolution fingerprinting method that is able to generate complex banding patterns which can be used to delineate intraspecific genetic relationships among bacteria. In the present study, AFLP was evaluated for its usefulness in the molecular typing of Salmonella typhi in comparison to ribotyping and pulsed-field gel electrophoresis (PFGE). Six S. typhi isolates from diverse geographic areas (Malaysia, Indonesia, India, Chile, Papua New Guinea and Switzerland) gave unique, heterogeneous profiles when typed by AFLP, a result which was consistent with ribotyping and PFGE analysis. In a further study of selected S. typhi isolates from Papua New Guinea which caused fatal and non-fatal disease previously shown to be clonally related by PFGE, AFLP discriminated between these isolates but did not indicate a linkage between genotype with virulence. We conclude that AFLP (discriminatory index=0.88) has a higher discriminatory power for strain differentiation among S. typhi than ribotyping (DI=0.63) and PFGE (DI=0.74).
Forty-three clinical strains of V. cholerae O1 biotype E1 Tor were isolated between 3 May and 10 June 1998 during an outbreak in the metropolitan area of Kuala Lumpur and its suburbs. With the exception of three Inaba strains that were restricted to three members of a family, all the others belonged to the Ogawa serotype. The strains were analysed for clonality using ribotyping and pulsed-field gel electrophoresis (PFGE). Two ribotypes, V/B21a and B27, were identified among 40 Ogawa isolates using BglI restriction endonuclease. Ribotype V/B21a has been described previously from Taiwan and Colombia and several Asian countries while B27 has been reported among isolates from Senegal. The three Inaba strains belonged to one ribotype, designated type A, not previously reported. PFGE analysis using NotI revealed that all isolates within a ribotype had identical profiles demonstrating clonality amongst the strains. Dice coefficient analysis of the two Ogawa genotypes revealed 89% similarity on ribotype patterns and 91.3% on PFGE profiles. Ribotype V/B21a isolates were associated with cases from dispersed areas of Kuala Lumpur and its suburbs while ribotype B27 was restricted to cases from one particular area suggesting a common-source outbreak.
Subtyping of Salmonella Paratyphi A isolates from India, Pakistan, Indonesia and Malaysia was carried out by pulsed-field gel electrophoresis (PFGE) to assess the extent of genetic diversity of these isolates from different endemic countries.
OBJECTIVE: Pulsed-field gel electrophoresis (PFGE) was used to investigate an outbreak of gastroenteritis caused by Salmonella enteritidis. The outbreak occurred among university undergraduates who consumed contaminated food.
METHOD: Molecular typing was done by analyzing DNA band patterns of isolates of S. enteritidis after digestion of chromosomal DNA with infrequently-cutting restriction endonucleases XbaI, AvrII, and SpeI and separation of DNA fragments using PFGE.
RESULTS: Twenty-nine outbreak isolates of S. enteritidis had identical or highly similar PFGE patterns, whereas different PFGE patterns were observed among three epidemiologically unrelated isolates obtained during the same period.
CONCLUSION: The data obtained confirm the value of PFGE in epidemiologic investigations of outbreaks caused by S. enteritidis.
The objective of this study was to evaluate the utility of a polymerase chain reaction (PCR) assay in detecting Mycobacterium tuberculosis in bronchoalveolar lavage (BAL) specimens of patients suspected of having active pulmonary tuberculosis (TB) but who were sputum smear-negative. Patients undergoing investigation for suspected pulmonary TB at the University Hospital, Kuala Lumpur, and who were sputum smear-negative underwent fibreoptic bronchoscopy and BAL. One portion of each lavage specimen was submitted for smear examination for acid-fast bacilli and mycobacterial culture and the other portion assayed by PCR for the presence of a 562-base pair DNA segment belonging to the insertion sequence IS986, unique to the M. tuberculosis complex. As controls, lavage specimens from patients with other lung lesions were also similarly tested. The PCR assay gave a positivity rate of 80.9% (55 of 68) compared with 8.8% of smear examination and 7.4% of culture for detecting M. tuberculosis in BAL specimens. The assay was positive in two of 45 BAL specimens from 35 control subjects. The PCR assay was more sensitive than smear and culture in detecting M. tuberculosis in BAL specimens of patients with sputum smear-negative pulmonary TB.
Methicillin-resistant Staphylococcus aureus (MRSA) infection has been endemic in the University Hospital, Kuala Lumpur since the late 1970s. Fifty isolates of MRSA obtained from clinical specimens of patients with nosocomial infections associated with this organism have been studied by pulsed-field gel electrophoresis (PFGE) of its chromosomal DNA fragments to discrimate between strains and to identify the predominant strain. Twenty-one chromosomal patterns were observed which could be further grouped into nine types. The predominant strain was Type 9-b (40% of isolates) found mainly in the Orthopaedic and Surgical Units. Outbreak strains found in the Special Care Nursery were of Type 1, entirely different from those of the surgical ward S2, which were of Type 9-b. Type 8 strains were found mainly at one end of the hospital building where the maternity, paediatric and orthopaedic units were situated. Genomic DNA fingerprinting by PFGE is recommended as a useful and effective tool for the purpose of epidemiological studies of MSRA infections, particularly for nosocomial infections.
Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.
This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.
Streptococcus pneumoniae is an epidemiologically important bacterial pathogen. Recently, we reported the antibiotic susceptibility patterns of a limited collection of pneumococcal isolates in Malaysia with a high prevalence of erythromycin resistant strains. In the present study, 55 of the pneumococcal isolates of serotype 19F were further analysed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The generated genotypic patterns were then correlated with the antibiograms previously reported. Forty-seven different PFGE profiles (PTs) were obtained, showing that the isolates were genetically diverse. MLST identified 16 sequence types (STs) with ST-236 being predominant (58.2%), followed by ST-81 (10.3%). Among the ST-236 isolates, 22 were erythromycin resistant S. pneumoniae (ERSP) and 15 were trimethoprim/sulfamethoxazole (TMP/SMX) resistant, while among ST-81, four isolates were ERSP and two were TMP/SMX resistant. The high prevalence of erythromycin resistant serotype 19F isolates of ST-236 in this study has also been reported in other North and South East Asian countries.
Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 10(4) CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases.
Rats are considered the principal maintenance hosts of Leptospira. The objectives of this study were isolation and identification of Leptospira serovars circulating among urban rat populations in Kuala Lumpur. Three hundred urban rats (73% Rattus rattus and 27% R. norvegicus) from three different sites were trapped. Twenty cultures were positive for Leptospira using dark-field microscopy. R. rattus was the dominant carrier (70%). Polymerase chain reaction (PCR) confirmed that all isolates were pathogenic Leptospira species. Two Leptospira serogroups, Javanica and Bataviae, were identified using microscopic agglutination test (MAT). Pulsed-field gel electrophoresis (PFGE) identified two serovars in the urban rat populations: L. borgpetersenii serovar Javanica (85%) and L. interrogans serovar Bataviae (15%). We conclude that these two serovars are the major serovars circulating among the urban rat populations in Kuala Lumpur. Despite the low infection rate reported, the high pathogenicity of these serovars raises concern of public health risks caused by rodent transmission of leptospirosis.
This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).