Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Apr;131(4):675-682.
    PMID: 35667890 DOI: 10.1016/j.prosdent.2022.04.018
    STATEMENT OF PROBLEM: The edentulous mandible is commonly treated with a 2-implant overdenture. A change in diameter of the implants may affect the biomechanical behavior of the overdenture, but information on these effects is lacking.

    PURPOSE: The purpose of this 3D finite element analysis study was to evaluate the biomechanical behavior of 2-implant mandibular overdentures (2IMO) and their individual components by using implants of different diameters.

    MATERIAL AND METHODS: A 3D mandibular model was obtained from the cone beam computed tomography (CBCT) images of a 59-year-old edentulous man, and a 3D denture model was developed from intraoral scanning files in the Mimics software program. A 3D model of different diameters of implants (2.5 mm, 3.0 mm, 3.5 mm, and 4.0 mm) with a LOCATOR attachment was developed in the Solidworks software program. Two same-sized implants were inserted in the mandibular model at 10 mm from the midline in the 3Matics software program. A vertical load of 100 N was applied on the first molar region on the right side or both sides in the ANSYS software program. The maximum von Mises stresses and strains were recorded and analyzed.

    RESULTS: Stresses within the implants decreased with an increase in diameter (from 2.5 mm to 3 mm, 3.5 mm, and 4.0 mm) of the implants. The highest stresses were observed with 2.5-mm-diameter implants (0.949 MPa under unilateral and 0.915 MPa under bilateral loading) and the lowest with Ø4-mm implants (0.710 MPa under unilateral and 0.703 MPa under bilateral loading). The strains on the implants ranged between 0.0000056 and 0.0000097, and those on the mandible ranged between 0.0000513 and 0.0000566 across all diameters of the implants without following a specific trend.

    CONCLUSIONS: In 2IMO, the stresses in the implants and mandible decreased with an increase in the diameter of the implants. The implants of lesser diameter (2.5 mm) exhibited the highest stresses and strains, and the implants of the largest diameter (4 mm) exhibited the lowest stresses and strains under unilateral and bilateral loading conditions.

    Matched MeSH terms: Dental Stress Analysis/methods
  2. Ang Y, Tan CG, Yahaya N
    Dent Mater J, 2021 May 29;40(3):584-591.
    PMID: 33328396 DOI: 10.4012/dmj.2020-213
    This study aimed to investigate the effect of various framework designs on the failure of posterior fiber reinforced composite (FRC) bridges and assess the post crack performances of the repaired prostheses. Thirty samples were prepared into three different groups of framework designs: cuspal support (CS), anatomic features (AF) and circular reinforcement (CR). All specimens were subjected to static loading test and acoustic emission analysis. Significant differences were found in the load and time of initial failures among the three groups (p<0.001). CS was identified as the optimum framework design. Samples with composite delamination at the pontic site were selected and repaired with a clinically simplified protocol. Significant differences were also observed between the repaired and original FRC bridges (p=0.01). The performance of these prostheses was highly dependent on the framework design and the perspective of repairing FRC bridges may warrant future investigations.
    Matched MeSH terms: Dental Stress Analysis
  3. Kiong M, Ashari A, Zamani NSM, How RAWM, Wahab RMA, Mohamed AMFS, et al.
    BMC Oral Health, 2024 May 07;24(1):538.
    PMID: 38715004 DOI: 10.1186/s12903-024-04284-9
    BACKGROUND: The introduction of auxiliaries such as composite attachment has improved the force delivery of clear aligner (CA) therapy. However, the placement of the attachment may give rise to a flash, defined as excess resin around the attachment which may affect CA force delivery. This in vitro study aims to determine the differences in the force generated by the attachment in the presence or absence of flash in CA.

    MATERIALS AND METHODS: Tristar Trubalance aligner sheets were used to fabricate the CAs. Thirty-four resin models were 3D printed and 17 each, were bonded with ellipsoidal or rectangular attachments on maxillary right central incisors. Fuji Prescale pressure film was used to measure the force generated by the attachment of CA. The images of colour density produced on the films were processed using a calibrated pressure mapping system utilising image processing techniques and topographical force mapping to quantify the force. The force measurement process was repeated after the flash was removed from the attachment using tungsten-carbide bur on a slow-speed handpiece.

    RESULTS: The intraclass correlation coefficient showed excellent reliability (ICC = 0.96, 95% CI = 0.92-0.98). The average mean force exerted by ellipsoidal attachments with flash was 8.05 ± 0.16 N, while 8.11 ± 0.18 N was without flash. As for rectangular attachments, the average mean force with flash was 8.48 ± 0.27 N, while 8.53 ± 0.13 N was without flash. Paired t-test revealed no statistically significant difference in the mean force exerted by CA in the presence or absence of flash for both ellipsoidal (p = 0.07) and rectangular attachments (p = 0.41). Rectangular attachments generated statistically significantly (p  0.05).

    Matched MeSH terms: Dental Stress Analysis
  4. AL-Makramani BM, Razak AA, Abu-Hassan MI
    J Prosthodont, 2009 Aug;18(6):484-8.
    PMID: 19694015
    PURPOSE: This study investigated the occlusal fracture resistance of Turkom-Cerafused alumina compared to Procera AllCeram and In-Ceram all-ceramic restorations.

    MATERIALS AND METHODS: Sixmaster dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Ten copings of 0.6 mm thickness were fabricated from each type of ceramic, for a total of thirty copings. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented with resin luting cement Panavia F according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: The results of the present study showed the following mean loads at fracture: Turkom-Cera (2184 +/- 164 N), In-Ceram (2042 +/- 200 N), and Procera AllCeram (1954 +/- 211 N). ANOVA and Scheffe's post hoc test showed that the mean load at fracture of Turkom-Cera was significantly different from Procera AllCeram (p < 0.05). Scheffe's post hoc test showed no significant difference between the mean load at fracture of Turkom-Cera and In-Ceram or between the mean load at fracture of In-Ceram and Procera AllCeram.

    CONCLUSION: Because Turkom-Cera demonstrated equal to or higher loads at fracture than currently accepted all-ceramic materials, it would seem to be acceptable for fabrication of anterior and posterior ceramic crowns.

    Matched MeSH terms: Dental Stress Analysis/methods
  5. Seow LL, Toh CG, Fok AS, Wilson NH
    Am J Dent, 2008 Oct;21(5):331-6.
    PMID: 19024261
    PURPOSE: To investigate the level and distribution of stresses in endodontically treated maxillary premolar teeth restored using various cavity designs of bonded all-ceramic restorations. The hypothesis tested was that the various all-ceramic approaches, including incorporating a pulp chamber extension in the restoration, had no influence on the stresses in the restored tooth unit.
    METHODS: Finite element packages Patran and Abaqus were used for the stress analysis. The cavity designs investigated include: (1) inlay (I); (2) inlay with palatal cusp coverage (IPC); (3) onlay (O); (4) inlay with pulp chamber extension (IPE); (5) inlay with palatal cusp coverage and pulp chamber extension (IPCPE); and (6) onlay with pulp chamber extension (OPE).
    RESULTS: In each case, tensile stresses were found to be concentrated subjacent to the occlusal fossa. Peak tensile stress and peak shear stress values along the tooth/restoration interface for IPC, O IPCPE and OPE cavity designs were found to be associated with the axiogingival line angle. Overall, the order of the various forms of restoration investigated in terms of the maximum principal stress (from greatest to lowest) was as follows: IPE > IPCPE > OPE > I > IPC > O.
    Matched MeSH terms: Dental Stress Analysis/methods*
  6. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Dental Stress Analysis*
  7. Razali MF, Mahmud AS, Mokhtar N
    J Mech Behav Biomed Mater, 2018 Jan;77:234-241.
    PMID: 28954242 DOI: 10.1016/j.jmbbm.2017.09.021
    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C.
    Matched MeSH terms: Dental Stress Analysis*
  8. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Feb;131(2):281.e1-281.e9.
    PMID: 37985307 DOI: 10.1016/j.prosdent.2023.10.023
    STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions.

    MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05).

    RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (Pstress values progressively increased from 5 to 10 mm to 15 to 20 mm from midline, represented as lateral incisor, canine, and premolar positions. The distal side of the implants exhibits higher strains than the mesial side of the implants.

    Matched MeSH terms: Dental Stress Analysis/methods
  9. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Dental Stress Analysis
  10. Sulaiman E, Alarami N, Wong YI, Lee WH, Al-Haddad A
    Dent Med Probl, 2018 10 18;55(3):275-279.
    PMID: 30328305 DOI: 10.17219/dmp/94656
    BACKGROUND: There is no sufficient literature on the effect of post location on endodontically treated premolar teeth with 2 roots.

    OBJECTIVES: The aim of the study was to evaluate the effect of fiber post location on fracture resistance and failure mode of endodontically treated premolars with 2 roots.

    MATERIAL AND METHODS: Fifty extracted maxillary first premolars with 2 roots were divided randomly into 5 groups. Group 1 was comprised of sound teeth, which received only metal crowns (control). Teeth from groups 2, 3, 4, and 5 were decoronated 2 mm above the cementoenamel junction (CEJ) and were endodontically treated. No post was placed in group 2 teeth. Teeth from groups 3, 4 and 5 were given a fiber post placed in the buccal canal, palatal canal, and both buccal and palatal canals, respectively. All teeth in groups 2, 3, 4, and 5 were built up with composite and full coverage metal crowns. A compressive static load was applied at an angle of 25° to the crowns with a crosshead speed of 0.5 mm/min, until fracture.

    RESULTS: One-way analysis of variance (ANOVA) showed significant differences among the groups (p = 0.002). A post hoc test showed significantly lower fracture resistance of group 4 compared to group 5 (p = 0.011). Furthermore, group 2 had significantly less fracture resistance compared to group 1 (p = 0.021) and group 5 (p = 0.002). According to Fisher's exact test, different post locations are non-significantly associated with fracture mode (p = 0.256).

    CONCLUSIONS: Fiber post location has a significant effect on fracture resistance of severely damaged, endodontically treated maxillary premolars with 2 roots. However, post placement in the palatal root is preferred, as it maintains the restorability of the tooth.

    Matched MeSH terms: Dental Stress Analysis
  11. Kamar Affendi NH, Ahmad R, Tong Wah L, Abdul Hamid NF, Abdul Hakim AY
    Dent Med Probl, 2024;61(2):257-268.
    PMID: 38686968 DOI: 10.17219/dmp/155811
    BACKGROUND: The screw-retrievable cement-retained (SRCR) design combines the benefits of both screwand cement-retained implant-supported restorations. This concept has sparked interest in implant dentistry. However, there is a lack of research on fracture behaviors and clinical performance of such restorations.

    OBJECTIVES: The aim of the present article was to review the current literature on the fracture loads and fracture modes of SRCR implant restorations - in vitro studies, and also studies demonstrating the clinical performance of such design.

    MATERIAL AND METHODS: A literature search was conducted from January 2000 to June 2022, using 6 databases to identify studies on fracture load and clinical performance that fulfilled the eligibility criteria. Thirty-eight studies met the inclusion criteria (22 in vitro and16 in vivo). The in vivo studies comprised case reports/series/letters (9), clinical techniques (2), retrospective/prospective studies (3), and randomized controlled trials (RCTs) (2).

    RESULTS: The reviewed articles reported the effects of the SRCR design on the fracture risk if screw access channels were filled or unfilled, with regard to their diameter, and the preparation before or after glazing. The effect of the type of material used in the construction on the fracture modes SRCR restorations was also reported. The long-term clinical data was mainly retrospective and referred to metal-ceramic constructions. Limited long-term clinical data was available for all-ceramic materials and high-performance polymers (HPPs).

    CONCLUSIONS: Screw-retrievable cement-retained implant restorations appear to have potential in the monolithic design. If the SRCR construction is metal-ceramic or made of a veneered material, special design and abutment selection should be considered. High-performance polymers may be recommended as a substitute for posterior implant restoration.

    Matched MeSH terms: Dental Stress Analysis
  12. Teng WS, Yew HZ, Jamadon NH, Qamaruz Zaman J, Meor Ahmad MI, Muchtar A
    J Mech Behav Biomed Mater, 2024 Mar;151:106361.
    PMID: 38176199 DOI: 10.1016/j.jmbbm.2023.106361
    The use of all porcelain materials in dentistry has significantly increased in recent years. However, chipping has remained a common problem that affects bilayered zirconia restorations. Bonding between porcelain and the underlying zirconia framework is crucial to the success of the restoration. The bond strength may be affected by such factors as residual thermal stress and the veneering technique. This research focuses on investigating the potential and constraints of materials through an examination of the porcelain veneering technique, particularly hand-layering and heat-pressing. Forty-two cylindrical disc samples of zirconia (n = 7/group) were fabricated in the dimensions of 10 × 1.2 mm (diameter [D] × height [H]). The zirconia specimens were milled from IPS e.max® ZirCad [Z] block and Luxen Zr [L] block (n = 21/zirconia). The zirconia cores were layered with IPS e.max® Zirliner and heat-pressed with IPS e.max® ZirPress to produce a final veneer dimension of 5 × 3 mm (D × H). Conventional layering was performed for the rest of the zirconia cores using IPS e.max® Ceram and Shofu Vintage Zr. The final study groups were Luxen-Vintage (LV), Luxen-Ceram (LC), Luxen Zirpress (LP), ZirCad-Vintage (ZV), ZirCad-Ceram (ZC) and ZirCad-Zirpress (ZP). Five samples were subjected to shear bond testing (SBS) with a universal testing machine with a 5 kN load cell and 0.5 mm/min crosshead speed (n = 5/group). A sample underwent nanoindentation, and another was sectioned using Isomet machine to study the bonding interface. One-way ANOVA was used to run the statistical analyses of the SBS test. Statistical differences were found between ZV with LC and LP (p stress is estimated to be higher in the middle of the porcelain compared with that on the surface and the interface. FESEM imaging reveals portions of visible bare zirconia on Luxen zirconia, whilst crack propagation occurred through voids in all hand-layered groups. Heat-pressed veneering showed comparable but not superior results to conventional hand-layered veneering. Heat-pressed veneering produced similar stress distribution profiles compared with hand-layered veneering.
    Matched MeSH terms: Dental Stress Analysis
  13. Zahari NAH, Farid DAM, Alauddin MS, Said Z, Ghazali MIM, Lee HE, et al.
    J Prosthet Dent, 2024 Dec;132(6):1329.e1-1329.e6.
    PMID: 39147631 DOI: 10.1016/j.prosdent.2024.07.017
    STATEMENT OF PROBLEM: Current 3-dimensionally (3D) printed denture bases have inadequate strength and durability for long-term use, and milled denture bases generate excessive waste. Addressing these limitations is crucial to advancing prosthetic dentistry, ensuring improved patient outcomes and promoting environmental responsibility.

    PURPOSE: The purpose of this in vitro study was to incorporate microparticles into a commercially available 3D printed denture base resin and compare its mechanical and biological properties with the conventional polymethyl methacrylate (PMMA) denture base material.

    MATERIAL AND METHODS: Microparticles were collected from milled zirconia blanks and were blended with a 3D printing denture base resin (NextDent Denture 3D+). The optimal zirconia microparticle content (2%) for blending and printed was determined by using a liquid-crystal display (LCD) 3D printer. The printed specimens were then postrinsed and postpolymerized based on the manufacturer's instructions. Mechanical and biological characterization were carried out in terms of flexural strength, fracture toughness, and fungal adhesion. One-way ANOVA was carried out to analyze the results statistically.

    RESULTS: The incorporation of microparticles in the 3D printed denture demonstrated higher mechanical strength (104.77 ±7.60 MPa) compared with conventional heat-polymerized denture base resin (75.15 ±24.41 MPa) (P

    Matched MeSH terms: Dental Stress Analysis
  14. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Stress Analysis/methods*
  15. Baig MR, Ariff FT, Yunus N
    Indian J Dent Res, 2011 Mar-Apr;22(2):210-2.
    PMID: 21891887 DOI: 10.4103/0970-9290.84288
    BACKGROUND: The clinical success of relining depends on the ability of reline resin to bond to denture base. Surface preparations may influence reline bond strength of urethane-based dimethacrylate denture base resin.
    AIM: To investigate the effect of bur preparation on the surface roughness (R a ) of eclipse denture base resin and its shear bond strength (SBS) to an intra-oral self-curing reline material. The mode of reline bonding failure was also examined.
    MATERIALS AND METHODS: Twenty-four cylindrical Eclipse™ specimens were prepared and separated into three groups of eight specimens each. Two groups were subjected to mechanical preparation using standard and fine tungsten carbide (TC) burs and the third group (control) was left unprepared. The R a of all specimens was measured using a contact stylus profilometer. Subsequently, relining was done on the prepared surface and SBS testing was carried out a day later using a universal testing machine.
    RESULTS: One-way ANOVA revealed significant differences (P<0.05) in R a and SBS values for all the groups. Post-hoc Tukey's HSD test showed significant differences (P<0.05) between all the groups in the R a values. For SBS also there were significant differences (P<0.05), except between standard bur and control.
    CONCLUSIONS: 1) There was a statistically significant difference in the R a of Eclipse™ specimens prepared using different carbide burs (P<0.05). 2) There was a statistically significant difference in the relined SBS (P<0.05) when prepared using different burs, but the difference between the standard bur and the control group was not statistically significant.
    Matched MeSH terms: Dental Stress Analysis/instrumentation
  16. Madfa AA, Kadir MR, Kashani J, Saidin S, Sulaiman E, Marhazlinda J, et al.
    Med Eng Phys, 2014 Jul;36(7):962-7.
    PMID: 24834856 DOI: 10.1016/j.medengphy.2014.03.018
    Different dental post designs and materials affect the stability of restoration of a tooth. This study aimed to analyse and compare the stability of two shapes of dental posts (parallel-sided and tapered) made of five different materials (titanium, zirconia, carbon fibre and glass fibre) by investigating their stress transfer through the finite element (FE) method. Ten three-dimensional (3D) FE models of a maxillary central incisor restored with two different designs and five different materials were constructed. An oblique loading of 100 N was applied to each 3D model. Analyses along the centre of the post, the crown-cement/core and the post-cement/dentine interfaces were computed, and the means were calculated. One-way ANOVAs followed by post hoc tests were used to evaluate the effectiveness of the post materials and designs (p=0.05). For post designs, the tapered posts introduced significantly higher stress compared with the parallel-sided post (p<0.05), especially along the centre of the post. Of the materials, the highest level of stress was found for stainless steel, followed by zirconia, titanium, glass fibre and carbon fibre posts (p<0.05). The carbon and glass fibre posts reduced the stress distribution at the middle and apical part of the posts compared with the stainless steel, zirconia and titanium posts. The opposite results were observed at the crown-cement/core interface.
    Matched MeSH terms: Dental Stress Analysis/methods*
  17. Purmal K, Sukumaran P
    Aust Orthod J, 2010 Nov;26(2):184-8.
    PMID: 21175030
    To investigate the shear bond strengths of buccal tubes and to determine the sites of failure.
    Matched MeSH terms: Dental Stress Analysis/instrumentation
  18. Siar CH, Pua CK, Toh CG, Romanos G, Ng KH
    Oral Surg Oral Med Oral Pathol Oral Radiol, 2012 Nov;114(5 Suppl):S46-53.
    PMID: 23083955 DOI: 10.1016/j.tripleo.2011.07.049
    The objective of this study was to investigate the cementum status in natural teeth opposing implant-supported bridgework.
    Matched MeSH terms: Dental Stress Analysis
  19. Ahmad F, Dent M, Yunus N
    J Prosthodont, 2009 Oct;18(7):596-602.
    PMID: 19515166 DOI: 10.1111/j.1532-849X.2009.00481.x
    This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
    Matched MeSH terms: Dental Stress Analysis
  20. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Contemp Dent Pract, 2008;9(2):33-40.
    PMID: 18264523
    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings.
    Matched MeSH terms: Dental Stress Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links