Displaying all 14 publications

Abstract:
Sort:
  1. Rezaee M, Basri M, Rahman RN, Salleh AB, Chaibakhsh N, Karjiban RA
    Int J Nanomedicine, 2014;9:539-48.
    PMID: 24531324 DOI: 10.2147/IJN.S49616
    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.
    Matched MeSH terms: Diclofenac/administration & dosage*
  2. Loh JW, Taib NA, Cheong YT, Tin TS
    World J Surg, 2020 08;44(8):2656-2666.
    PMID: 32193622 DOI: 10.1007/s00268-020-05458-6
    BACKGROUND: Pre-incision wound infiltration using NSAID is an alternative method to manage post-operative pain in surgery. It is postulated that NSAID delivered peripherally exerts efficient analgesic and anti-inflammatory effect with minimal systemic complication. This study explored the efficacy of using diclofenac for wound infiltration in open thyroidectomy and parathyroidectomy as compared to conventional agent, bupivacaine.

    METHODOLOGY: The study was designed as a double-blind, randomized controlled trial involving 94 patients who underwent open thyroidectomy or parathyroidectomy in Hospital Pulau Pinang, Malaysia, from November 2015 to November 2016. The study compared the efficacy of pre-incision wound infiltration of diclofenac (n = 47) versus bupivacaine (n = 47) in post-operative pain relief. Wound infiltration is given prior to skin incision. Mean pain score at designated time interval within the 24-h post-operative period, time to first analgesia, total analgesic usage and total analgesic cost were assessed.

    RESULTS: Ninety-four patients were recruited with no dropouts. Mean age was 49.3 (SD = 14.2) with majority being female (74.5%). Ethnic distribution recorded 42.6% Chinese, 38.3% Malay, followed by 19.1% Indian. Mean duration of surgery was 123.8 min (SD = 56.5), and mean length of hospital stay was 4.7 days (SD = 1.8). The characteristics of patient in both groups were generally comparable except that there were more cases of total thyroidectomy in the diclofenac group (n = 31) as compared to the bupivacaine group (n = 16). Mean pain score peaked at immediate post-operative period (post-operative 0.5 h) with a score of 3.5 out of 10 and the level decreased steadily over the next 20 h starting from 4 h post-operatively. Pre-incision wound infiltration using diclofenac had better pain control as compared to bupivacaine at all time interval assessed. In the resting state, the mean post-operative pain score difference was statistically significant at 2 h [2.1 (SD = 1.5) vs. 2.8 (SD = 1.8), p = 0.04]. During neck movement, the dynamic pain score difference was statistically significant at post-operative 1 h [2.7 (SD = 1.9) vs. 3.7 (SD = 2.1), p = 0.02]; 2 h [2.7 (SD = 1.6) vs. 3.7 (SD = 2.0), p = 0.01]; 4 h [2.2 (SD = 1.5) vs. 2.9 (SD = 1.7), p = 0.04], 6 h [1.9 (SD = 1.4) vs. 2.5 (SD = 1.6), p = 0.04] and 12 h [1.5 (SD = 1.5) vs. 2.2 (SD = 1.4), p = 0.03]. Mean dose of tramadol used as rescue analgesia in 24 h duration was lower in the diclofenac group as compared to bupivacaine group [13.8 mg (SD = 24.9) vs. 36.2 mg (SD = 45.1), p = 0.01]. The total cost of analgesia used was significantly cheaper in diclofenac group as compared to bupivacaine group [RM 3.47 (SD = 1.51) vs. RM 13.43 (SD = 1.68), p diclofenac provides better post-operative pain relief compared to bupivacaine for patient who had underwent open thyroidectomy or parathyroidectomy. Diclofenac is cheap and easily available in the limited resource setting. This approach offers a superior alternative for post-operative pain relief as compared to bupivacaine.

    Matched MeSH terms: Diclofenac/administration & dosage*
  3. Saravanan M, Bhaskar K, Maharajan G, Pillai KS
    J Drug Target, 2011 Feb;19(2):96-103.
    PMID: 20380621 DOI: 10.3109/10611861003733979
    We have previously reported on the targeting of diclofenac sodium in joint inflammation using gelatin magnetic microspheres. To overcome complications in the administration of magnetic microspheres and achieve higher targeting efficiency, the present work focuses on the formulation of gelatin microspheres for intra-articular administration. Drug-loaded microspheres were prepared by the emulsification/cross-linking method, characterized by drug loading, size distribution, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gas chromatography, and in vitro release studies. The targeting efficiency of microspheres was studied in vivo in rabbits. The microspheres showed drug loading of 9.8, 18.3, and 26.7% w/w with an average size range of 37-46 µm, depending upon the drug-polymer ratio. They were spherical in nature and free from surface drug as evidenced by the SEM photographs. FT-IR, DSC, and XRD revealed the absence of drug-polymer interaction and amorphous nature of entrapped drug. Gas chromatography confirms the absences of residual glutaraldehyde. The formulated microspheres could prolong the drug release up to 30 days in vitro. About 81.2 and 43.7% of administered drug in the microspheres were recovered from the target joint after 1 and 7 days of postintra-articular injection, respectively, revealing good targeting efficiency.
    Matched MeSH terms: Diclofenac/administration & dosage*
  4. Lim SS, Tan PC, Sockalingam JK, Omar SZ
    Aust N Z J Obstet Gynaecol, 2008 Feb;48(1):71-7.
    PMID: 18275575 DOI: 10.1111/j.1479-828X.2007.00808.x
    To compare oral celecoxib with oral diclofenac as pain reliever after perineal repair following normal vaginal birth.
    Matched MeSH terms: Diclofenac/administration & dosage*
  5. Billa N, Yuen KH, Khader MA, Omar A
    Int J Pharm, 2000 May 15;201(1):109-20.
    PMID: 10867269
    A xanthan gum matrix controlled release tablet formulation containing diclofenac sodium was evaluated in vitro and was found to release the drug at a uniform rate. The gastrointestinal transit behaviour of the formulation as determined by gamma scintigraphy, using healthy male volunteers under fasted and fed conditions, indicated that gastric emptying was delayed with food intake. In contrast, the small intestinal transit remained practically unchanged under both food statuses. Therefore, the delay in caecal arrival observed in the fed state can be attributed to the delay in gastric emptying. Rate of diclofenac sodium absorption was generally higher in the fed state compared to the fasted state, however the total amount absorbed under both food statuses remained practically the same. The rate of in vivo dissolution of the drug in the fed state was faster compared to that in the fasted state. Thus, at the time of caecal arrival, in vivo dissolution was complete in the fed state, unlike in the fasted state, where almost 60% of the drug was delivered to the colon.
    Matched MeSH terms: Diclofenac/administration & dosage
  6. Moorthy M, Fakurazi S, Ithnin H
    Pak J Biol Sci, 2008 Aug 01;11(15):1901-8.
    PMID: 18983031
    This study was conducted to identify and to compare the mitochondrial morphological alterations in livers of rats treated with various doses of diclofenac and ibuprofen. Hundred and forty-four male Sprague Dawley rats were dosed with 3, 5 and 10 mg kg(-1) diclofenac and ibuprofen in saline via intraperitoneal injection for 15 days. The control group was administered with saline in a similar manner. Four rats were euthanised every 3 days until day 15. While 200 mg kg(-1) diclofenac and ibuprofen-treated rats (n = 4) were euthanized 10 h posttreatment. The livers were removed, cleaned and a section across the right lobe was taken and fixed in 4% (v/v) glutaraldehyde for electron microscopy analysis and the remaining samples were kept at -80 degrees C for Western blot analysis. Five milligram per kilogram and 10 mg kg(-1) diclofenac-administered rats for 15 days revealed the presence of enlarged mitochondria, irregular and ruptured mitochondrial membranes. While rats administered with 10 mg kg(-1) ibuprofen also showed the presence of mitochondria with irregular membrane structure and ruptured membranes. Western blotting analysis of mitochondrial fractions revealed the expression of cytochrome c in all samples and complete absence of cytochrome c expression in the cytosolic fraction of all samples after day 15. Analysis in 200 mg kg(-1) diclofenac and ibuprofen-treated groups, revealed expression of cytochrome c in both mitochondrial and cytosolic fractions. This observation indicates that both diclofenac and ibuprofen may alter the morphology of mitochondria, leading to cytochrome c release into the cytosol. Further studies needs to be conducted to investigate on the activity of the mitochondria following both treatments.
    Matched MeSH terms: Diclofenac/administration & dosage
  7. Goh JZ, Tang SN, Chiong HS, Yong YK, Zuraini A, Hakim MN
    Int J Nanomedicine, 2015;10:297-303.
    PMID: 25678786 DOI: 10.2147/IJN.S75545
    Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.
    Matched MeSH terms: Diclofenac/administration & dosage
  8. Lua GW, Muthukaruppan R, Menon J
    Dig Dis Sci, 2015 Oct;60(10):3118-23.
    PMID: 25757446 DOI: 10.1007/s10620-015-3609-9
    BACKGROUND: Non steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the incidence of post endoscopic retrograde cholangiopancreatography pancreatitis (PEP). There were various trials using different routes and dosages of NSAIDs but meta-analysis revealed inconsistent results.

    AIMS: The aims of this study were to determine the efficacy of rectal diclofenac in preventing PEP and to evaluate any adverse events.

    METHODS: This was a randomized, open-label, two-arm, prospective clinical trial. Only patients at high risk of developing PEP were recruited. They received 100 mg rectal diclofenac or no intervention immediately after ERCP. The patients were reviewed 30 days after discharge to evaluate any adverse event.

    RESULTS: Among 144 recruited patients, 69 (47.9%) received diclofenac and 75 (52.1%) had no intervention. Eleven patients (7.6%) developed PEP, in which seven were from the diclofenac group and four were in the control group. Eight cases of PEP (5.5%) were mild and three cases (2.1%) were moderate. The differences in pancreatitis incidence and severity between both groups were not statistically significant. There were 11 adverse events reported. Clinically significant bleeding happened in four patients (2.8%): one from the diclofenac group and three from the control group. Other events included cholangitis: two patients (2.9%) from the diclofenac group and four (5.3%) from the control group. One patient from the diclofenac group (1.4%) had a perforation which was treated conservatively.

    CONCLUSIONS: In summary, prophylactic rectal diclofenac did not significantly decrease the incidence of PEP among patients at high risk for developing PEP. However, the administration of diclofenac was fairly safe with few clinical adverse events.

    Matched MeSH terms: Diclofenac/administration & dosage*
  9. Rahim H, Sadiq A, Khan S, Khan MA, Shah SMH, Hussain Z, et al.
    Drug Des Devel Ther, 2017;11:2443-2452.
    PMID: 28860715 DOI: 10.2147/DDDT.S140626
    This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.
    Matched MeSH terms: Diclofenac/administration & dosage
  10. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Diclofenac/administration & dosage
  11. Pabreja K, Dua K, Padi SS
    Curr Drug Deliv, 2010 Oct;7(4):324-8.
    PMID: 20695843
    The systemic use of non-steroidal anti-inflammatory drugs (NSAIDs) which act by inhibiting cyclooxygenase (COX) is severely hampered by gastric and peptic ulcers. The topical delivery of NSAIDs has the advantages of avoiding gastric and peptic ulcers and delivering the drug to the inflammation site. Importance of aceclofenac as a new generational NSAID has inspired the development of topical dosage forms. This mode of administration may help to avoid typical side effects of NSAIDs associated with oral and systemic administration such as gastric irritation, particularly diarrhoea, nausea, abdominal pain and flatulence. The aim of this study was to formulate topical gel containing 1% of aceclofenac in carbopol and PEG base and to evaluate it for analgesic and antiinflammatory activity using carrageenan-induced thermal hyperalgesia and paw oedema in rats. Carrageenan administration into the hind paw produced a significant inflammation associated with hyperalgesia as shown by decreased rat paw withdrawal latency in response to a thermal stimulus (47+/-0.5 degrees C) 4 h after carrageenan injection. Topical application of AF1 significantly attenuated the development of hypersensitivity to thermal stimulus as compared to control (P<0.05) and other formulation treated groups (P<0.05). All the AF semisolid formulations, when applied topically 2 h before carrageenan administration, inhibited paw edema in a timedependent manner with maximum percent edema inhibition of 80.33+/-2.52 achieved with AF1 after 5 h of carrageenan administration However, topical application of AF2 markedly prevented the development of edema as compared to other formulation (AF2 and AF3) treated groups (P<0.05). Among all the semisolid formulations, Carbopol gel base was found to be most suitable dermatological base for aceclofenac.
    Matched MeSH terms: Diclofenac/administration & dosage
  12. Dua K, Pabreja K, Ramana MV
    Acta Pharm, 2010 Dec;60(4):467-78.
    PMID: 21169138 DOI: 10.2478/v1007-010-0036-5
    Aceclofenac is a new generation non-steroidal anti-inflammatory drug showing effective anti-inflammatory and analgesic properties. It is available in the form of tablets of 100 mg. Importance of aceclofenac as a NSAID has inspired development of topical dosage forms. This mode of administration may help avoid typical side effects associated with oral administration of NSAIDs, which have led to its withdrawal. Furthermore, aceclofenac topical dosage forms can be used as a supplement to oral therapy for better treatment of conditions such as arthritis. Ointments, creams, and gels containing 1% (m/m) aceclofenac have been prepared. They were tested for physical appearance, pH, spreadability, extrudability, drug content uniformity, in vitro diffusion and in vitro permeation. Gels prepared using Carbopol 940 (AF2, AF3) and macrogol bases (AF7) were selected after the analysis of the results. They were evaluated for acute skin irritancy, anti-inflammatory and analgesic effects using the carrageenan-induced thermal hyperalgesia and paw edema method. AF2 was shown to be significantly (p < 0.05) more effective in inhibiting hyperalgesia associated with inflammation, compared to AF3 and AF7. Hence, AF2 may be suggested as an alternative to oral preparations.
    Matched MeSH terms: Diclofenac/administration & dosage
  13. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Diclofenac/administration & dosage
  14. Tantowi NACA, Mohamed S, Lau SF, Hussin P
    Daru, 2020 Dec;28(2):443-453.
    PMID: 32388789 DOI: 10.1007/s40199-020-00343-y
    BACKGROUND: Osteoporotic-osteoarthritis is an incapacitating musculoskeletal illness of the aged.

    OBJECTIVES: The anti-inflammatory and anti-catabolic actions of Diclofenac were compared with apigenin-C-glycosides rich Clinacanthus nutans (CN) leaf extract in osteoporotic-osteoarthritis rats.

    METHODS: Female Sprague Dawley rats were randomized into five groups (n = 6). Four groups were bilateral ovariectomised for osteoporosis development, and osteoarthritis were induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee joints. The Sham group was sham-operated, received saline injection and deionized drinking water. The treatment groups were orally given 200 or 400 mg extract/kg body weight or 5 mg diclofenac /kg body weight daily for 28 days. Articular cartilage and bone changes were monitored by gross and histological structures, micro-CT analysis, serum protein biomarkers, and mRNA expressions for inflammation and catabolic protease genes.

    RESULTS: HPLC analysis confirmed that apigenin-C-glycosides (shaftoside, vitexin, and isovitexin) were the major compounds in the extract. The extract significantly and dose-dependently reduced cartilage erosion, bone loss, cartilage catabolic changes, serum osteoporotic-osteoarthritis biomarkers (procollagen-type-II-N-terminal-propeptide PIINP; procollagen-type-I-N-terminal-propeptide PINP; osteocalcin), inflammation (IL-1β) and mRNA expressions for nuclear-factor-kappa-beta NF-κβ, interleukin-1-beta IL-1β, cyclooxygenase-2; and matrix-metalloproteinase-13 MMP13 activities, in osteoporotic-osteoarthritis rats comparable to Diclofenac.

    CONCLUSION: This study demonstrates that apigenin-C-glycosides at 400 mg CN extract/kg (about 0.2 mg apigenin-equivalent/kg) is comparable to diclofenac in suppressing inflammation and catabolic proteases for osteoporotic-osteoarthritis prevention. Graphical abstract.

    Matched MeSH terms: Diclofenac/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links