Displaying publications 1 - 20 of 473 in total

Abstract:
Sort:
  1. Shahrizaila N, Yuki N
    J. Biomed. Biotechnol., 2011;2011:829129.
    PMID: 21197269 DOI: 10.1155/2011/829129
    Molecular mimicry between self and microbial components has been proposed as the pathogenic mechanism of autoimmune diseases, and this hypothesis is proven in Guillain-Barré syndrome. Guillain-Barré syndrome, the most frequent cause of acute neuromuscular paralysis, sometimes occurs after Campylobacter jejuni enteritis. Gangliosides are predominantly cell-surface glycolipids highly expressed in nervous tissue, whilst lipo-oligosaccharides are major components of the Gram-negative bacterium C. jejuni outer membrane. IgG autoantibodies to GM1 ganglioside were found in the sera from patients with Guillain-Barré syndrome. Molecular mimicry was demonstrated between GM1 and lipo-oligosaccharide of C. jejuni isolated from the patients. Disease models by sensitization of rabbits with GM1 and C. jejuni lipo-oligosaccharide were established. Guillain-Barré syndrome provided the first verification that an autoimmune disease is triggered by molecular mimicry. Its disease models are helpful to further understand the molecular pathogenesis as well as to develop new treatments in Guillain-Barré syndrome.
    Matched MeSH terms: Disease Models, Animal*
  2. Leong XF, Ng CY, Jaarin K
    Biomed Res Int, 2015;2015:528757.
    PMID: 26064920 DOI: 10.1155/2015/528757
    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies.
    Matched MeSH terms: Disease Models, Animal*
  3. Abdul Samad S, Yasin MS, Arumugham G, Yap KL
    Malays J Pathol, 1993 Dec;15(2):119-23.
    PMID: 8065172
    An invasive aspergillosis model in rabbits was attempted using 3 concentrations of A. fumigatus conidia. Conidia concentrations of 1 x 10(6), 1 x 10(7) and 1 x 10(8) were inoculated intravenously into rabbits. The severity of infection was directly proportional to the inoculum size of the conidia. Aspergillus fumigatus was isolated from livers, kidneys, spleens, hearts and lungs of infected rabbits at a rate of 82%, 75%, 57%, 54% and 32% respectively. Cultures of urine specimens taken by bladder tap were positive for A. fumigatus in 30% of the rabbits tested. Blood cultures using the Bactec Fungal System (Becton Dickinson Corp., USA) failed to isolate A. fumigatus in 20 rabbits with biopsy-proven invasive apergillosis. Active infection with high fungal tissue burden occurred between 2-4 days after infection in rabbits inoculated with 1 x 10(7) conidia.
    Matched MeSH terms: Disease Models, Animal
  4. Blue ME, Wilson MA, Beaty CA, George TJ, Arnaoutakis GJ, Haggerty KA, et al.
    J. Neuropathol. Exp. Neurol., 2014 Dec;73(12):1134-43.
    PMID: 25383634 DOI: 10.1097/NEN.0000000000000134
    Neuropathology and neurologic impairment were characterized in a clinically relevant canine model of hypothermic (18°C) circulatory arrest (HCA) and cardiopulmonary bypass (CPB). Adult dogs underwent 2 hours of HCA (n = 39), 1 hour of HCA (n = 20), or standard CPB (n = 22) and survived 2, 8, 24, or 72 hours. Neurologic impairment and neuropathology were much more severe after 2-hour HCA than after 1-hour HCA or CPB; histopathology and neurologic deficit scores were significantly correlated. Apoptosis developed as early as 2 hours after injury and was most severe in the granule cells of the hippocampal dentate gyrus. Necrosis evolved more slowly and was most severe in amygdala and pyramidal neurons in the cornu ammonis hippocampus. Neuronal injury was minimal up to 24 hours after 1-hour HCA, but 1 dog that survived to 72 hours showed substantial necrosis in the hippocampus, suggesting that, with longer survival time, the injury was worse. Although neuronal injury was minimal after CPB, we observed rare apoptotic and necrotic neurons in hippocampi and caudate nuclei. These results have important implications for CPB in humans and may help explain the subtle cognitive changes experienced by patients after CPB.
    Matched MeSH terms: Disease Models, Animal*
  5. Nathan S
    Virulence, 2014 Apr 1;5(3):371-4.
    PMID: 24569500 DOI: 10.4161/viru.28338
    Matched MeSH terms: Disease Models, Animal*
  6. Thomas R, Hamat RA, Neela V
    J. Med. Microbiol., 2013 Nov;62(Pt 11):1777-9.
    PMID: 23988629 DOI: 10.1099/jmm.0.063230-0
    Matched MeSH terms: Disease Models, Animal*
  7. Kamaruzaman NA, Kardia E, Kamaldin N', Latahir AZ, Yahaya BH
    Biomed Res Int, 2013;2013:691830.
    PMID: 23653896 DOI: 10.1155/2013/691830
    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
    Matched MeSH terms: Disease Models, Animal*
  8. Mak JW, Choong MF, Lam PL, Suresh K
    Acta Trop., 1990 May;47(4):223-6.
    PMID: 1973024
    The leaf-monkeys, Presbytis cristata and Presbytis melalophos, experimentally infected with subperiodic Brugia malayi, have been used for studies on the pathoimmunology of the infection and the screening of potential filaricides during the last 6-8 years, and considerable information on the pattern of microfilaraemia and adult worm recoveries have been obtained. The prepatent periods in 97 P. cristata and 45 P. melalophos, each infected with about 200 infective larvae, were similar, these being approximately 70 and 68 days respectively. Although all infected animals became microfilaraemic, the peak geometric mean count was much higher in P. cristata than in P. melalophos, this being 182.0 and 65.8 per ml blood respectively. Mean adult worm recovery expressed as the percentage of the infective dose was 4.7% and 2.5%, respectively. Most worms were recovered from the sacral nodes/thoracic duct or inguinal lymph nodes in these animals. In view of the higher worm recovery and the higher peak microfilaraemia attained, it is concluded that P. cristata is a better model for the infection than P. melalophos.
    Matched MeSH terms: Disease Models, Animal*
  9. Petrányi G, Mieth H, Leitner I
    PMID: 1221502
    Infective larvae of Brugia malayi subperiodic obtained by dissection of infected Aedes togoi were injected subcutaneously into the scrotal region of Mastomys natalensis. From altogether 58 infected male M. natalensis 81% showed consistently or intermittently detectable microfilaraemia, whereas in 19% of the animals no microfilaraemia could be detected at any stage. The mean prepatent period was 136 days; the microfilarial density varied from 1 to 535 per 20 c. mm blood. In those animlas with consistently detectable and in general higher microfilaraemia an average of 13.1 live adult worms were found, against an average of 6.4 adult worms in animals with intermittent detectable and in general lower microfilaraemia. An average of 1.5 worms was found in animals which at no stage showed detectable microfilaraemia. A correlation between worm burden and prepatent period could be observed in the individual groups. From the total of 520 live adult worms recovered at necropsy, 37% were found in the lungs, 29% in the parenchyma of the testes and 34% in the lymphatic system. 47% of live fertile female worms were found in the lymphatic system, whereas the majority, i.e; 52% of infertile female worms were detected in the lungs. In addition, 380 encapsulated dead worms were found, most of them (98%) in the lymphatic system. 61% of a total of 900 live and dead worms were found in the region of the lymphatic system.
    Matched MeSH terms: Disease Models, Animal*
  10. Islam MR, Abdullah JM
    Malays J Med Sci, 2014 Dec;21(Spec Issue):34-40.
    PMID: 25941461 MyJurnal
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are a prognostic genetic model of absence epilepsy. This model displays the electro-clinical, behavioural, and pharmacological features of absence seizures. Although GAERS share typical characteristics, including spike-and-wave discharges (SWDs) in the electroencephalography (EEG), age-dependent studies with these animals have not yet been reported. The aim of the present study is to perform a systematic comparison contrasting the SWDs of young and older GAERS, in terms of the number, duration, frequency, and waveform morphology of the discharges, as well as the pre-SWD EEG characteristics, using identical measurement and analysis techniques. The number, cumulative total duration and mean duration of SWDs were significantly higher in young GAERS (4 to 6 months) compared to older GAERS (12 to 14 months). Furthermore, the SWD spectra and average SWD waveforms indicated that a single cycle of the SWD contains more energy in faster components, such as increased spikes and higher power, in the SWDs of the young GAERS. Additionally, older GAERS showed weak amplitude spikes in SWDs and higher power pre-SWDs. These clear morphological differences in the EEGs of young and older GAERS rats should be further examined in future studies that explore new dimensions of genetic absence epilepsy.
    Matched MeSH terms: Disease Models, Animal
  11. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S
    Nutr Metab (Lond), 2016;13:65.
    PMID: 27708685 DOI: 10.1186/s12986-016-0123-9
    Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
    Matched MeSH terms: Disease Models, Animal
  12. Zenab B. Hamad Mohamed, Hamad Abdulsalam Hamad Alfaris, Nor Zamila Abdullah, Norra Harun, Naznin Muhammad, Roslina Abdul Rahim
    MyJurnal
    Previous studies have proven the existence of a complex association
    between progressive kidney damage and hypercholesterolemia. Most studies focused on
    the impact of chronic high blood cholesterol levels on the kidney. Information on the
    early effect of hypercholesterolemia on the kidney is still lacking. The aim of this study
    was therefore to determine early effect of high cholesterol diet on the kidney in an
    animal model. (Copied from article).
    Matched MeSH terms: Disease Models, Animal
  13. Zenab B. Hamad Mohamed, Hamad Abdulsalam Hamad Alfarisi, Nor Zamzila Abdullah, Naznin Muhammad, Roslan Abdul Rahim
    MyJurnal
    Although there is a growing insight into the causes and mechanisms of
    kidney diseases, preventive and therapeutic measures are still few. The aim of this study
    was therefore to determine the renoprotective effect of tualang honey against high
    cholesterol diet induced acute kidney disease in an animal model. (Copied from article).
    Matched MeSH terms: Disease Models, Animal
  14. Qamruddin I, Alam MK, Khamis MF, Husein A
    Biomed Res Int, 2015;2015:608530.
    PMID: 26881201 DOI: 10.1155/2015/608530
    To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals.
    Matched MeSH terms: Disease Models, Animal
  15. Tan CH, Leong PK, Fung SY, Sim SM, Ponnudurai G, Ariaratnam C, et al.
    Acta Trop., 2011 Feb;117(2):119-24.
    PMID: 21073851 DOI: 10.1016/j.actatropica.2010.11.001
    Hypnale hypnale (hump-nosed pit viper) is a medically important venomous snake in Sri Lanka and Southwestern India. Bite of this snake may result in hemostatic dysfunction, acute kidney injury and death. Clinical studies indicated that the locally available polyvalent antivenoms produced in India are not effective against hump-nosed pit viper envenoming. Hence, there is an urgent need to search for effective antivenom. In this paper, we examined the ability of Calloselasma rhodostoma (Malayan pit viper) monovalent antivenom and the Hemato polyvalent antivenom (both produced by Thai Red Cross Society, TRCS) to neutralize the lethality and toxic effects of H. hypnale venom, as C. rhodostoma is considered a sister taxon of H. hypnale. In vitro neutralization studies showed that the Hemato polyvalent antivenom effectively neutralized the lethality of H. hypnale venom (1.52mgvenom/mL antivenom) as well as the hemorrhagic, procoagulant and necrotic activities of the venom. The monovalent C. rhodostoma antivenom could also neutralize the lethality and toxic activities of the venom, but the potency was lower. The Hemato polyvalent antivenom also effectively protected mice from the lethal and local effects of H. hypnale venom in an in vivo rodent model of envenoming. Furthermore, the polyvalent antivenom could also effectively neutralize the venom of Daboia russelii (2.50mgvenom/mL antivenom), another common cause of snake bites in Sri Lanka and South India. These findings suggested that the Hemato polyvalent antivenom may be beneficial in the antivenom treatment of H. hypnale envenoming.
    Matched MeSH terms: Disease Models, Animal
  16. El-Desouky S, Taalab YM, El-Gamal M, Mohamed W, Salama M
    Methods Mol. Biol., 2019;2011:451-464.
    PMID: 31273716 DOI: 10.1007/978-1-4939-9554-7_27
    Leigh syndrome (LS) is a common neurodegenerative disease affecting neonates with devastating sequences. One of the characteristic features for LS is the phenotypic polymorphism, which-in part-can be dedicated to variety of genetic causes. A strong correlation with mitochondrial dysfunction has been assumed as the main cause of LS. This was based on the fact that most genetic causes are related to mitochondrial complex I genome. The first animal LS model was designed based on NDUFS4 knockdown. Interestingly, however, this one or others could not recapitulate the whole spectrum of manifestations encountered in different cases of LS. We show in this chapter a new animal model for LS based on silencing of one gene that is reported previously in clinical cases, FOXRED1. The new model carries some differences from previous models in the fact that more histopathological degeneration in dopaminergic system is seen and more behavioral changes can be recognized. FOXRED1 is an interesting gene that is related to complex I assembly, hence, plays important role in different neurodegenerative disorders leading to different clinical manifestations.
    Matched MeSH terms: Disease Models, Animal
  17. Okuda KS, Lee HM, Velaithan V, Ng MF, Patel V
    Microcirculation, 2016 08;23(6):389-405.
    PMID: 27177346 DOI: 10.1111/micc.12289
    Cancer metastasis which predominantly occurs through blood and lymphatic vessels, is the leading cause of death in cancer patients. Consequently, several anti-angiogenic agents have been approved as therapeutic agents for human cancers such as metastatic renal cell carcinoma. Also, anti-lymphangiogenic drugs such as monoclonal antibodies VGX-100 and IMC-3C5 have undergone phase I clinical trials for advanced and metastatic solid tumors. Although anti-tumor-associated angiogenesis has proven to be a promising therapeutic strategy for human cancers, this approach is fraught with toxicities and development of drug resistance. This emphasizes the need for alternative anti-(lymph)angiogenic drugs. The use of zebrafish has become accepted as an established model for high-throughput screening, vascular biology, and cancer research. Importantly, various zebrafish transgenic lines have now been generated that can readily discriminate different vascular compartments. This now enables detailed in vivo studies that are relevant to both human physiological and tumor (lymph)angiogenesis to be conducted in zebrafish. This review highlights recent advancements in the zebrafish anti-vascular screening platform and showcases promising new anti-(lymph)angiogenic compounds that have been derived from this model. In addition, this review discusses the promises and challenges of the zebrafish model in the context of anti-(lymph)angiogenic compound discovery for cancer treatment.
    Matched MeSH terms: Disease Models, Animal*
  18. Tijjani Salihu A, Muthuraju S, Aziz Mohamed Yusoff A, Ahmad F, Zulkifli Mustafa M, Jaafar H, et al.
    Behav. Brain Res., 2016 10 01;312:374-84.
    PMID: 27327104 DOI: 10.1016/j.bbr.2016.06.034
    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment.
    Matched MeSH terms: Disease Models, Animal*
  19. Zulkhernain NS, Teo SH, Patel V, Tan PJ
    Curr Cancer Drug Targets, 2014;14(8):764-73.
    PMID: 25348017 DOI: 10.2174/1568009614666141028121347
    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.
    Matched MeSH terms: Disease Models, Animal*
  20. Dups J, Middleton D, Long F, Arkinstall R, Marsh GA, Wang LF
    Virol. J., 2014;11:102.
    PMID: 24890603 DOI: 10.1186/1743-422X-11-102
    Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis.
    Matched MeSH terms: Disease Models, Animal*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links