Displaying all 13 publications

Abstract:
Sort:
  1. Othman, M., Ahmad, K.
    ASM Science Journal, 2008;2(2):183-183.
    MyJurnal
    Comet Lulin was discovered by Lin Chi-Sheng and Ye Quanzhi using the 16-inch telescope at Lulin Observatory in Nantou, Taiwan in 2007. According to Brian Marsden of the Smithsonian Astrophysical Observatory, it reached its perihelion on 10 January 2009 at a distance of 113 million
    km from the Sun. It moves in a very nearly parabolic retrograde (‘backwards’ compared to the movement of the planets) orbit at an inclination of 1.6 degrees from the ecliptic (“Newfound Comet Lulin to Grace Night Skies”). http://www.space.com/spacewatch/090206-ns-cometlulin.html). It passed nearest to the Earth at a distance of 61 million km on 23 February 2009.
  2. K. Ramesh, P. Ramalakshmi, R. Anitha
    Sains Malaysiana, 2015;44:1389-1396.
    The determination of variance of surface air temperature is very essential since it has a direct impact on vegetation, environment and human livelihood. Forecast of surface air temperature is difficult because of the complex physical phenomenon and the random-like behavior of atmospheric system which influences the temperature event on the earth surface. In this study, forecast models based on artificial neural network (ANN) and genetic programming (GP) approaches were proposed to predict lead seven days minimum and maximum surface air temperature using the weather parameters observed at the station Chennai, India. The outcome of this study stated that models formulated using ANN approach are more accurate than genetic programming for all seven days with the highest coefficient of determination (R2), least mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) on deployment with independent test dataset. ANN models give statistically acceptable mean absolute error of 0.59oC for lead day one in minimum temperature forecast and 0.86oC variance for lead day one in maximum temperature forecast. The study also clarified that the level of accuracy of the proposed prediction models were found to be better for smaller lead days when compared with higher lead days with both approaches.
  3. Chen, Nuo-Geng, Ejria Saleh, Yap, Tzuen-Kiat, Irwan Isnain
    MyJurnal
    Selingan Island off Sandakan, Sabah is a famous turtle nesting ground and a part of the Turtle Islands Park (TIP) within the Coral Triangle region of Malaysia. This small island faces the serious problem of beach erosion that is reducing the turtle nesting area. Sabah Parks deployed stone revetments in 2005, followed by placement of reef balls at the southern part of the Selingan Island in 2007 for protecting the shoreline. The objective of this study was to determine the effectiveness of these measures for shoreline protection. Shoreline changes were determined from satellite images, beach profiling and field observations. Satellite images from 2010 to 2016 were obtained from Google Earth Pro analyzed to examine the changes in the shape and size of the island with QGIS software. Beach profiling was performed in December 2017 at three sites and compared with the condition in 2011. The findings indicated that the shape of the island was squeezed towards the east where the reef balls were located. The size of the island has not changed much in 9 years after the deployment of the reef balls, but a high volume of sediments accumulated at the south due to the presence of shoreline protection. Generally, the man-made structures in Selingan Island are effective in trapping the sediment and providing more nesting area for turtles. It is recommended that the shoreline dynamics of the island should be regularly monitored for better understanding of the changes and taking appropriate actions.
  4. Tan, S.G.
    MyJurnal
    Malaysia, with her tropical jungles, mangroves and seas, is blessed with riches in biodiversity, being one of the twelve megabiodiversity countries on earth. Genetics has contributed substantially to the success of our country's agricultural production especially of rubber and palm oil. Hence, it should play a pivotal role in helping Malaysia fulfill her responsibility to identify, characterize and sustainably utilize her numerous indigenous bioresources for the benefit of humanity.
  5. Santosa BJ
    This research, compares the observed seismogram of the PNG earthquake, C051099C with its synthetics in UGM, Wanagama, Indonesia, PMG, Port Moresby, PNG and CHTO, Chiang May, Thailand. The synthetic seismogram is calculated using preliminary earth model, which are the IASPEI91 and the anisotropic version of PREM. The seismogram comparison is conducted after imposing a low pass filter whose corner frequency is fixed at 20 mHz. We have found a real discrepancy on the travel time and waveform of some wave phases, namely P, S and Rayleigh and Love surface waves, by seismogram comparison in time domain. To correct the discrepancies, we need to adjust the earth structures, which include the depth of the Moho reflector, the velocity gradient of bh, and the propagation velocity of the P and S waves. The correction has been conducted in the earth layering system from the upper mantle down to the CMB, so that the excellent seismogram fitting was obtained for nearly all phases of the targeted waves. The used wave length for analysing is about 150 km. It turns out that the waveform of the body and surface waves is sensitive to the change of velocity structure. The analysis of repetitive ScS depth phases at closer distance stations gives better opportunity to investigate the S velocity structure near the CMB, something not used by other seismologists.
  6. Mana SCA, Fatt NT, Ashraf MA
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22799-22807.
    PMID: 27987120 DOI: 10.1007/s11356-016-8195-7
    The field of arsenic pollution research has grown rapidly in recent years. Arsenic constitutes a broad range of elements from the Earth's crust and is released into the environment from both anthropogenic and natural sources due to its relative mobility under different redox conditions. The toxicity of arsenic is described in its inorganic form, as inorganic arsenic compounds can leach into different environments. Sampling was carried out in the Bestari Jaya catchment while using a land use map to locate the site, and experiments were conducted via sequential extraction and inductively coupled plasma optical emission spectroscopy to quantify proportions of arsenic in the sediment samples. The results show that metals in sediments of nonresidual fractions, which are more likely to be likely released into aquatic environments, are more plentiful than the residual sediment fractions. These findings support the mobility of heavy metals and especially arsenic through sediment layers, which can facilitate remediation in environments heavily polluted with heavy metals.
  7. Chang, Kok Yung, Kwan, Wai Hoe, Kua, Hui Bun
    Scientific Research Journal, 2018;15(1):75-83.
    MyJurnal
    The massive growth of construction industry especially in the developing countries results in extensive quarrying activities which ultimately would lead to the depletion of natural resources. Apart from extensive extraction of the natural granite from the earth for concrete production, marble production industry is also majorly contributing to the quarrying activities. In addition, high volume of waste is generated by the marble production industry as 70% of marble is wasted during the production such as quarrying, cutting, processing and others which is environmental unfriendly. In a way to achieve sustainable construction, the present study is to utilise the waste marble in replacing the coarse aggregate in concrete production. The engineering performance including workability, compressive strength, ultrasonic pulse velocity (UPV) and chloride penetration were analysed. The raw waste marble obtained from the industry were crushed and sieved into maximum size 20 mm and used to replace the coarse aggregate at the level of 20%, 40%, 60%, 80% and 100% respectively. Results show that 60% of the replacement level has yield to optimum result by achieving the highest compressive strength and UPV at approximate 5% higher than the control. Meanwhile, the effect on chloride penetration resistance is more significant, i.e. approximate 19% better than the control. However, increasing the replacement level of waste marble has no significant effect on workability, although an increasing trend was observed.
  8. Mohd Armi, A.S., Afiza, A.S., Mohd Ramzi, A.
    ASM Science Journal, 2012;6(2):149-151.
    MyJurnal
    Over the last century, the earth’s climate has changed. It is a serious global, long-term problem which involves complex interactions. A lot of evidence suggests that most of the observed factors contributing to the crisis over the last 50 years can be attributed to human activities. Malaysia has always been vulnerable to extreme climatic events such as typhoons, floods and drought. We expect climate change to exacerbate these vulnerabilities. To ensure, that our water resources will always be secure and ready for use. We need to create awareness in the public and the policy makers so that they will acknowledge that the climate change issue is real. They also need to accept that actions to adapt with our vulnerabilities should be immediately put in place. We can do this by integrating the various sector policies and securing the participation of all stakeholders in Malaysia and other countries.
  9. Hisamuddin Shah, N.H., Lim, H.S., Mat Jafri, M.Z.
    MyJurnal
    Ultraviolet radiation is at shorter wavelengths than the visible spectrum (400 to 700 nm) and is divided into three components: UV-A (315 to 400 nm), UV-B (280 to 315 nm), and UV-C (less than 280 nm). Global increases in UV-B fluxes from decreasing stratospheric ozone amounts caused by anthropogenic chlorine releasing gases (mostly chlorofluorocarbons) have been a matter of public concern for the past 20 years. This surface UV irradiance data retrieved from Ozone Monitoring Instrument (OMI) from AURA spacecraft with the filename OMUVB. OMUVB contains surface UV irradiance data along with supplementary information generated using the OMI global mode measurements. In this mode each file contains the sunlit portion of a single orbit from pole-to-pole, with an approximately 2600 km wide swath composed of 60 ground pixels. The OMI measurements are used to estimate the ultraviolet (UV) radiation reaching the Earth’s surface. The product contains spectral irradiances at 305.1, 310.1, 324.1, and 380.1 nm corresponding to both the overpass time and the local solar noon. Using the correspondence latitude and longitude of Peninsular Malaysia, we can develop the pattern of distribution of UV irradiance interpolations using Sigma Plot and Adobe Photoshop.
  10. Jørgensen TS, Nielsen BLH, Petersen B, Browne PD, Hansen BW, Hansen LH
    G3 (Bethesda), 2019 05 07;9(5):1295-1302.
    PMID: 30923136 DOI: 10.1534/g3.119.400085
    Copepoda is one of the most ecologically important animal groups on Earth, yet very few genetic resources are available for this Subclass. Here, we present the first whole genome sequence (WGS, acc. UYDY01) and the first mRNA transcriptome assembly (TSA, Acc. GHAJ01) for the tropical cyclopoid copepod species Apocyclops royi Until now, only the 18S small subunit of ribosomal RNA gene and the COI gene has been available from A. royi, and WGS resources was only available from one other cyclopoid copepod species. Overall, the provided resources are the 8th copepod species to have WGS resources available and the 19th copepod species with TSA information available. We analyze the length and GC content of the provided WGS scaffolds as well as the coverage and gene content of both the WGS and the TSA assembly. Finally, we place the resources within the copepod order Cyclopoida as a member of the Apocyclops genus. We estimate the total genome size of A. royi to 450 Mb, with 181 Mb assembled nonrepetitive sequence, 76 Mb assembled repeats and 193 Mb unassembled sequence. The TSA assembly consists of 29,737 genes and an additional 45,756 isoforms. In the WGS and TSA assemblies, >80% and >95% of core genes can be found, though many in fragmented versions. The provided resources will allow researchers to conduct physiological experiments on A. royi, and also increase the possibilities for copepod gene set analysis, as it adds substantially to the copepod datasets available.
  11. Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al.
    Science, 2019 12 13;366(6471).
    PMID: 31831642 DOI: 10.1126/science.aax3100
    The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.
  12. Jasim M. Rajab, Mat Jafri, M.Z, Lim, H.S., Abdullah, K.
    MyJurnal
    Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant. It is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. It is produced by the incomplete combustion of fossil fuels, and biomass burning. The CO data are obtained from Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite. The AIRS provides information for several greenhouse gases, CO2, CH4, CO, and O3 as a one goal of the AIRS instrument (included on the EOS Aqua satellite launched, May 4, 2002) as well as to improve weather prediction of the water and energy cycle. The results of the analysis of the retrieved CO total column amount (CO_total_column_A) as well as effective of the CO volume mixing ratio (CO_VMR_eff_A), Level-3 monthly (AIR*3STM) 1º*1º spatial resolution, ascending are used to study the CO distribution over the East and West Malaysia for the year 2003. The CO maps over the study area were generated by using Kriging Interpolation technique and analyzed by using Photoshop CS. Variations in the biomass burning and the CO emissions where noted, while the highest CO occurred at late dry season in the region which has experienced extensive biomass burning and greater draw down of CO occurred in the pristine continental environment (East Malaysia). In all cases, the CO concentration at West Malaysia is higher than East Malaysia. The southeastern Sarawak (lat. 3.5˚ - long. 115.5˚) is less polluted regions and less the CO in most of times in the year. Examining satellite measurements revealed that the enhanced CO emission correlates with occasions of less rainfall during the dry season.
  13. Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, et al.
    Science, 2020 05 22;368(6493):869-874.
    PMID: 32439789 DOI: 10.1126/science.aaw7578
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links