Displaying all 7 publications

Abstract:
Sort:
  1. Suhaimi NS, Yap KP, Ajam N, Thong KL
    FEMS Microbiol Lett, 2014 Sep;358(1):11-3.
    PMID: 25047976
    Kosakonia radicincitans (formerly known as Enterobacter radicincitans), an endophytic bacterium was isolated from the symptomatic tissues of bacterial wilt diseased banana (Musa spp.) plant in Malaysia. The total genome size of K. radicincitans UMEnt01/12 is 5 783 769 bp with 5463 coding sequences (CDS), 75 tRNAs, and 9 rRNAs. The annotated draft genome of the K. radicincitans UMEnt01/12 strain might shed light on its role as a bacterial wilt-associated bacterium.
    Matched MeSH terms: Endophytes/genetics
  2. Ng KP, Ngeow YF, Yew SM, Hassan H, Soo-Hoo TS, Na SL, et al.
    Eukaryotic Cell, 2012 May;11(5):703-4.
    PMID: 22544898 DOI: 10.1128/EC.00074-12
    Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of D. eschscholzii isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.
    Matched MeSH terms: Endophytes/genetics*
  3. Gan HM, McGroty SE, Chew TH, Chan KG, Buckley LJ, Savka MA, et al.
    J Bacteriol, 2012 Nov;194(21):5981-2.
    PMID: 23045495 DOI: 10.1128/JB.01469-12
    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.
    Matched MeSH terms: Endophytes/genetics
  4. Yap LS, Lee WL, Ting ASY
    J Microbiol Methods, 2021 12;191:106358.
    PMID: 34743930 DOI: 10.1016/j.mimet.2021.106358
    L-asparaginase from endophytic Fusarium proliferatum (isolate CCH, GenBank accession no. MK685139) isolated from the medicinal plant Cymbopogon citratus (Lemon grass), was optimized for its L-asparaginase production and its subsequent cytotoxicity towards Jurkat E6 cell line. The following factors were optimized; carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate. Optimization of L-asparaginase production was performed using One-Factor-At-A-Time (OFAT) and Response surface methodology (RSM) model. The cytotoxicity of the crude enzyme from isolate CCH was tested on leukemic Jurkat E6 cell line. The optimization exercise revealed that glucose concentration, nitrogen source, L-asparagine concentration and temperature influenced the L-asparaginase production of CCH. The optimum condition suggested using OFAT and RSM results were consistent. As such, the recommended conditions were 0.20% of glucose, 0.99% of L-asparagine and 5.34 days incubation at 30.50 °C. The L-asparaginase production of CCH increased from 16.75 ± 0.76 IU/mL to 22.42 ± 0.20 IU/mL after optimization. The cytotoxicity of the crude enzyme on leukemic Jurkat cell line recorded IC50 value at 33.89 ± 2.63% v/v. To conclude, the enzyme extract produced from Fusarium proliferatum under optimized conditions is a potential alternative resource for L-asparaginase.
    Matched MeSH terms: Endophytes/genetics
  5. Hazalin NA, Ramasamy K, Lim SM, Cole AL, Majeed AB
    Phytomedicine, 2012 May 15;19(7):609-17.
    PMID: 22397996 DOI: 10.1016/j.phymed.2012.01.007
    Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis.
    Matched MeSH terms: Endophytes/genetics
  6. Haruna E, Zin NM, Kerfahi D, Adams JM
    Microb Ecol, 2018 Jan;75(1):88-103.
    PMID: 28642991 DOI: 10.1007/s00248-017-1002-2
    The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80-90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.
    Matched MeSH terms: Endophytes/genetics
  7. Harun A, James RM, Lim SM, Abdul Majeed AB, Cole AL, Ramasamy K
    BMC Complement Altern Med, 2011 Sep 24;11:79.
    PMID: 21943123 DOI: 10.1186/1472-6882-11-79
    BACKGROUND: BACE1 was found to be the major β-secretase in neurons and its appearance and activity were found to be elevated in the brains of AD patients. Fungal endophytic extracts for BACE1 inhibitory activity and cytotoxicity against PC-12 (a rat pheochromocytoma with neuronal properties) and WRL68 (a non-tumorigenic human hepatic) were investigated.

    METHODS: Endophytes were isolated from plants collected from Kuala Pilah, Negeri Sembilan and the National Park, Pahang and the extracts were tested for BACE1 inhibition. For investigation of biological activity, the pure endophytic cultures were cultivated for 14 days on PDA plates at 28°C and underwent semipolar extraction with ethyl acetate.

    RESULTS: Of 212 endophytic extracts (1000 μg/ml), 29 exhibited more than 90% inhibition of BACE1 in the preliminary screening. Four extracts from isolates HAB16R13, HAB16R14, HAB16R18 and HAB8R24 identified as Cytospora rhizophorae were the most active with IC(50(BACE1)) values of less than 3.0 μg/ml. The most active extract HAB16R13 was shown to non-competitively inhibit BACE1 with K(i) value of 10.0 μg/ml. HAB16R13 was considered non-potent against PC-12 and WRL68 (IC(50(CT))) of 60.0 and 40.0 μg/ml, respectively).

    CONCLUSIONS: This first report on endophytic fungal extract with good BACE1 inhibitory activity demonstrates that more extensive study is required to uncover the potential of endophytes.

    Matched MeSH terms: Endophytes/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links