AIMS AND METHODS: This study explored male smokers' knowledge, beliefs, and behaviors related to SHS exposure and smoking in the home, to guide future intervention development. Twenty-four men who smoked and lived in Klang Valley, Kuantan, or Kuala Terengganu took part in semi-structured interviews which explored knowledge and beliefs regarding SHS in the home, and associated home-smoking behaviors. Data were managed and analyzed using the framework approach.
RESULTS: There was limited knowledge regarding the health risks associated with SHS: the smell of SHS in the home was a more prominent concern in most cases. Many had no rules in place restricting home smoking, and some suggested that smoking in specific rooms and/or near windows meant SHS was not "shared" with other household members. A few fathers had created but not maintained a smoke-free home prior to and/or after their children were born. Desire to smoke in the home conflicted with men's sense of responsibility as the head of the household to protect others and set a good example for their children.
CONCLUSIONS: Men's home-smoking behaviors are shaped by a lack of understanding of the health risks associated with SHS exposure. Gaining a broader understanding of the factors that shape men's decisions to create a smoke-free home is important to facilitate the development of culturally appropriate interventions that address their responsibility to protect other household members from SHS exposure.
IMPLICATIONS: Our findings highlight the need for public information campaigns in Malaysia to educate men who smoke regarding the health harms associated with SHS in the home and the ways in which SHS travels and lingers in household air. This is important given men's concerns about SHS often focus on the smell of cigarette smoke in the home. Our findings suggest a number of potential avenues for future intervention development, including household and community-level initiatives that could build on men's sense of responsibility as the head of the household and/or their general desire to protect their families.
METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.
RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.
CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.
OBJECTIVE: The aim of this study was to determine the association between wheezing symptoms among toddlers attending DCCs and indoor particulate matter, PM10, PM2.5, and microbial count level in urban DCCs in the District of Seremban, Malaysia.
METHODS: Data collection was carried out at 10 DCCs located in the urban area of Seremban. Modified validated questionnaires were distributed to parents to obtain their children's health symptoms. The parameters measured were indoor PM2.5, PM10, carbon monoxide, total bacteria count, total fungus count, temperature, air velocity, and relative humidity using the National Institute for Occupational Safety and Health analytical method.
RESULTS: All 10 DCCs investigated had at least one indoor air quality parameter exceeding the acceptable level of standard guidelines. The prevalence of toddlers having wheezing symptoms was 18.9%. There was a significant different in mean concentration of PM2.5 and total bacteria count between those with and those without wheezing symptoms (P = 0.02, P = 0.006).
CONCLUSIONS: Urban DCCs are exposed to many air pollutants that may enter their buildings from various adjacent sources. The particle concentrations and presence of microbes in DCCs might increase the risk of exposed children for respiratory diseases, particularly asthma, in their later life.