Displaying publications 1 - 20 of 193 in total

Abstract:
Sort:
  1. Guo L, Malara D, Battaglia P, Waiho K, Davis DA, Deng Y, et al.
    Genome Biol Evol, 2024 Mar 02;16(3).
    PMID: 38408866 DOI: 10.1093/gbe/evae037
    The suppression of recombination is considered a hallmark of sex chromosome evolution. However, previous research has identified undifferentiated sex chromosomes and sex determination by single SNP in the greater amberjack (Seriola dumerili). We observed the same phenomena in the golden pompano (Trachinotus ovatus) of the same family Carangidae and discovered a different sex-determining SNP within the same gene Hsd17b1. We propose an evolutionary model elucidating the turnover of sex-determining mutations by highlighting the contrasting dynamics between purifying selection, responsible for maintaining W-linked Hsd17b1, and neutral evolution, which drives Z-linked Hsd17b1. Additionally, sporadic loss-of-function mutations in W-linked Hsd17b1 contribute to the conversion of W chromosomes into Z chromosomes. This model was directly supported by simulations, closely related species, and indirectly by zebrafish mutants. These findings shed new light on the early stages of sex chromosome evolution.
    Matched MeSH terms: Evolution, Molecular
  2. Li LF, Pusadee T, Wedger MJ, Li YL, Li MR, Lau YL, et al.
    Nat Commun, 2024 Feb 21;15(1):1182.
    PMID: 38383554 DOI: 10.1038/s41467-024-45447-0
    High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.
    Matched MeSH terms: Evolution, Molecular
  3. Goldtzvik Y, Sen N, Lam SD, Orengo C
    Curr Opin Struct Biol, 2023 Aug;81:102640.
    PMID: 37354790 DOI: 10.1016/j.sbi.2023.102640
    Proteins provide the basis for cellular function. Having multiple versions of the same protein within a single organism provides a way of regulating its activity or developing novel functions. Post-translational modifications of proteins, by means of adding/removing chemical groups to amino acids, allow for a well-regulated and controlled way of generating functionally distinct protein species. Alternative splicing is another method with which organisms possibly generate new isoforms. Additionally, gene duplication events throughout evolution generate multiple paralogs of the same genes, resulting in multiple versions of the same protein within an organism. In this review, we discuss recent advancements in the study of these three methods of protein diversification and provide illustrative examples of how they affect protein structure and function.
    Matched MeSH terms: Evolution, Molecular
  4. Hu L, Xu Z, Fan R, Wang G, Wang F, Qin X, et al.
    Plant Biotechnol J, 2023 Jan;21(1):78-96.
    PMID: 36117410 DOI: 10.1111/pbi.13926
    Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.
    Matched MeSH terms: Evolution, Molecular
  5. Kambol R, Gatseva A, Gifford RJ
    Retrovirology, 2022 Dec 20;19(1):30.
    PMID: 36539757 DOI: 10.1186/s12977-022-00615-2
    Lentiviruses (genus Lentivirus) are complex retroviruses that infect a broad range of mammals, including humans. Unlike many other retrovirus genera, lentiviruses have only rarely been incorporated into the mammalian germline. However, a small number of endogenous retrovirus (ERV) lineages have been identified, and these rare genomic "fossils" can provide crucial insights into the long-term history of lentivirus evolution. Here, we describe a previously unreported endogenous lentivirus lineage in the genome of the South African springhare (Pedetes capensis), demonstrating that the host range of lentiviruses has historically extended to rodents (order Rodentia). Furthermore, through comparative and phylogenetic analysis of lentivirus and ERV genomes, considering the biogeographic and ecological characteristics of host species, we reveal broader insights into the long-term evolutionary history of the genus.
    Matched MeSH terms: Evolution, Molecular
  6. Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al.
    Nat Commun, 2022 02 03;13(1):689.
    PMID: 35115514 DOI: 10.1038/s41467-022-28359-9
    As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
    Matched MeSH terms: Evolution, Molecular*
  7. Bentley K, Tee HK, Pearson A, Lowry K, Waugh S, Jones S, et al.
    Viruses, 2021 11 29;13(12).
    PMID: 34960659 DOI: 10.3390/v13122390
    Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.
    Matched MeSH terms: Evolution, Molecular
  8. Sudo MPS, Yesudasan R, Neik TX, Masilamany D, Jayaraj J, Teo SS, et al.
    Plant Sci, 2021 Sep;310:110985.
    PMID: 34315600 DOI: 10.1016/j.plantsci.2021.110985
    Weedy rice (Oryza spp.) is a major nuisance to rice farmers from all over the world. Although the emergence of weedy rice in East Malaysia on the island of Borneo is very recent, the threat to rice yield has reached an alarming stage. Using 47,027 genotyping-by-sequencing (GBS)-derived SNPs and candidate gene analysis of the plant architecture domestication gene TAC1, we assessed the genetic variations and evolutionary origin of weedy rice in East Malaysia. Our findings revealed two major evolutionary paths for genetically distinct weedy rice types. Whilst the cultivar-like weedy rice are very likely to be the weedy descendant of local coexisting cultivars, the wild-like weedy rice appeared to have arisen through two possible routes: (i) accidental introduction from Peninsular Malaysia weedy rice populations, and (ii) weedy descendants of coexisting cultivars. The outcome of our genetic analyses supports the notion that Sabah cultivars and Peninsular Malaysia weedy rice are the potential progenitors of Sabah weedy rice. Similar TAC1 haplotypes were shared between Malaysian cultivated and weedy rice populations, which further supported the findings of our GBS-SNP analyses. These different strains of weedy rice have convergently evolved shared traits, such as seeds shattering and open tillers. A comparison with our previous simple-sequence repeat-based population genetic analyses highlights the strength of genome-wide SNPs, including detection of admixtures and low-level introgression events. These findings could inform better strategic management for controlling the spread of weedy rice in the region.
    Matched MeSH terms: Evolution, Molecular
  9. Liu J, Chen X, Liu Y, Lin J, Shen J, Zhang H, et al.
    Infect Dis Poverty, 2021 Aug 21;10(1):112.
    PMID: 34419160 DOI: 10.1186/s40249-021-00895-4
    BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is pandemic. However, the origins and global transmission pattern of SARS-CoV-2 remain largely unknown. We aimed to characterize the origination and transmission of SARS-CoV-2 based on evolutionary dynamics.

    METHODS: Using the full-length sequences of SARS-CoV-2 with intact geographic, demographic, and temporal information worldwide from the GISAID database during 26 December 2019 and 30 November 2020, we constructed the transmission tree to depict the evolutionary process by the R package "outbreaker". The affinity of the mutated receptor-binding region of the spike protein to angiotensin-converting enzyme 2 (ACE2) was predicted using mCSM-PPI2 software. Viral infectivity and antigenicity were tested in ACE2-transfected HEK293T cells by pseudovirus transfection and neutralizing antibody test.

    RESULTS: From 26 December 2019 to 8 March 2020, early stage of the COVID-19 pandemic, SARS-CoV-2 strains identified worldwide were mainly composed of three clusters: the Europe-based cluster including two USA-based sub-clusters; the Asia-based cluster including isolates in China, Japan, the USA, Singapore, Australia, Malaysia, and Italy; and the USA-based cluster. The SARS-CoV-2 strains identified in the USA formed four independent clades while those identified in China formed one clade. After 8 March 2020, the clusters of SARS-CoV-2 strains tended to be independent and became "pure" in each of the major countries. Twenty-two of 60 mutations in the receptor-binding domain of the spike protein were predicted to increase the binding affinity of SARS-CoV-2 to ACE2. Of all predicted mutants, the number of E484K was the largest one with 86 585 sequences, followed by S477N with 55 442 sequences worldwide. In more than ten countries, the frequencies of the isolates with E484K and S477N increased significantly. V367F and N354D mutations increased the infectivity of SARS-CoV-2 pseudoviruses (P 

    Matched MeSH terms: Evolution, Molecular*
  10. Coppard SE, Jessop H, Lessios HA
    Sci Rep, 2021 Aug 16;11(1):16568.
    PMID: 34400682 DOI: 10.1038/s41598-021-95872-0
    The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.
    Matched MeSH terms: Evolution, Molecular
  11. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: Evolution, Molecular
  12. Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, et al.
    Genome Biol, 2021 04 29;22(1):120.
    PMID: 33910595 DOI: 10.1186/s13059-021-02336-9
    BACKGROUND: Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly.

    RESULTS: As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100-300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization.

    CONCLUSIONS: Our results indicate that even in the "simple" case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.

    Matched MeSH terms: Evolution, Molecular
  13. Ramly NZ, Dix SR, Ruzheinikov SN, Sedelnikova SE, Baker PJ, Chow YP, et al.
    Commun Biol, 2021 03 19;4(1):376.
    PMID: 33742128 DOI: 10.1038/s42003-021-01904-w
    In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.
    Matched MeSH terms: Evolution, Molecular
  14. Lam SD, Babu MM, Lees J, Orengo CA
    PLoS Comput Biol, 2021 03;17(3):e1008708.
    PMID: 33651795 DOI: 10.1371/journal.pcbi.1008708
    Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
    Matched MeSH terms: Evolution, Molecular
  15. Tan CH, Tan KY
    Toxins (Basel), 2021 02 09;13(2).
    PMID: 33572266 DOI: 10.3390/toxins13020127
    Envenomation resulted from sea snake bite is a highly lethal health hazard in Southeast Asia. Although commonly caused by sea snakes of Hydrophiinae, each species is evolutionarily distinct and thus, unveiling the toxin gene diversity within individual species is important. Applying next-generation sequencing, this study investigated the venom-gland transcriptome of Hydrophis curtus (spine-bellied sea snake) from Penang, West Malaysia. The transcriptome was de novo assembled, followed by gene annotation and sequence analyses. Transcripts with toxin annotation were only 96 in number but highly expressed, constituting 48.18% of total FPKM in the overall transcriptome. Of the 21 toxin families, three-finger toxins (3FTX) were the most abundantly expressed and functionally diverse, followed by phospholipases A2. Lh_FTX001 (short neurotoxin) and Lh_FTX013 (long neurotoxin) were the most dominant 3FTXs expressed, consistent with the pathophysiology of envenomation. Lh_FTX001 and Lh_FTX013 were variable in amino acid compositions and predicted epitopes, while Lh_FTX001 showed high sequence similarity with the short neurotoxin from Hydrophis schistosus, supporting cross-neutralization effect of Sea Snake Antivenom. Other toxins of low gene expression, for example, snake venom metalloproteinases and L-amino acid oxidases not commonly studied in sea snake venom were also identified, enriching the knowledgebase of sea snake toxins for future study.
    Matched MeSH terms: Evolution, Molecular
  16. Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, Yip HY, et al.
    Commun Biol, 2021 01 19;4(1):83.
    PMID: 33469163 DOI: 10.1038/s42003-020-01637-2
    Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
    Matched MeSH terms: Evolution, Molecular
  17. Haddad-Boubaker S, Ben Hamda C, Ghedira K, Mefteh K, Bouafsoun A, Boutiba-Ben Boubaker I, et al.
    PLoS One, 2021;16(11):e0259859.
    PMID: 34807924 DOI: 10.1371/journal.pone.0259859
    Rhinoviruses (RV) are a major cause of Severe Acute Respiratory Infection (SARI) in children, with high genotypic diversity in different regions. However, RV type diversity remains unknown in several regions of the world. In this study, the genetic variability of the frequently circulating RV types in Northern Tunisia was investigated, using phylogenetic and phylogeographic analyses with a specific focus on the most frequent RV types: RV-A101 and RV-C45. This study concerned 13 RV types frequently circulating in Northern Tunisia. They were obtained from respiratory samples collected in 271 pediatric SARI cases, between September 2015 and November 2017. A total of 37 RV VP4-VP2 sequences, selected among a total of 49 generated sequences, was compared to 359 sequences from different regions of the world. Evolutionary analysis of RV-A101 and RV-C45 showed high genetic relationship between different Tunisian strains and Malaysian strains. RV-A101 and C45 progenitor viruses' dates were estimated in 1981 and 1995, respectively. Since the early 2000s, the two types had a wide spread throughout the world. Phylogenetic analyses of other frequently circulating strains showed significant homology of Tunisian strains from the same epidemic period, in contrast with earlier strains. The genetic relatedness of RV-A101 and RV-C45 might result from an introduction of viruses from different clades followed by local dissemination rather than a local persistence of an endemic clades along seasons. International traffic may play a key role in the spread of RV-A101, RV-C45, and other RVs.
    Matched MeSH terms: Evolution, Molecular
  18. Selvaraju G, Leow TC, Salleh AB, Normi YM
    Molecules, 2020 Dec 09;25(24).
    PMID: 33316879 DOI: 10.3390/molecules25245797
    Previously, a hypothetical protein (HP) termed Bleg1_2437 (currently named Bleg1_2478) from Bacillus lehensis G1 was discovered to be an evolutionary divergent B3 subclass metallo-β-lactamase (MBL). Due to the scarcity of clinical inhibitors for B3 MBLs and the divergent nature of Bleg1_2478, this study aimed to design and characterise peptides as inhibitors against Bleg1_2478. Through in silico docking, RSWPWH and SSWWDR peptides with comparable binding energy to ampicillin were obtained. In vitro assay results showed RSWPWH and SSWWDR inhibited the activity of Bleg1_2478 by 50% at concentrations as low as 0.90 µM and 0.50 µM, respectively. At 10 µM of RSWPWH and 20 µM of SSWWDR, the activity of Bleg1_2478 was almost completely inhibited. Isothermal titration calorimetry (ITC) analyses showed slightly improved binding properties of the peptides compared to ampicillin. Docked peptide-protein complexes revealed that RSWPWH bound near the vicinity of the Bleg1_2478 active site while SSWWDR bound at the center of the active site itself. We postulate that the peptides caused the inhibition of Bleg1_2478 by reducing or blocking the accessibility of its active site from ampicillin, thus hampering its catalytic function.
    Matched MeSH terms: Evolution, Molecular
  19. Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA
    Sci Rep, 2020 12 03;10(1):21156.
    PMID: 33273523 DOI: 10.1038/s41598-020-77890-6
    Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.
    Matched MeSH terms: Evolution, Molecular
  20. Riddell J, Basu Mallick C, Jacobs GS, Schoenebeck JJ, Headon DJ
    Eur J Hum Genet, 2020 12;28(12):1694-1702.
    PMID: 32499598 DOI: 10.1038/s41431-020-0660-6
    Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.
    Matched MeSH terms: Evolution, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links