Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Gouwanda D, Senanayake NA
    PMID: 22256153 DOI: 10.1109/IEMBS.2011.6091928
    Gait stability is primary in assessing individuals with high risk of falling, particularly the elderly. Custom made self-adjustable wireless gyroscope suit is used as a sensing device to quantify gait stability. A nonlinear time series analysis i.e. maximum Lyapunov exponent (λ*) was employed to estimate the short term and long term stability and it is closely related to the ability of human neuro-muscular control system in maintaining gait stability. Experimental analysis and tests validated the efficacy of this novel approach. The results achieved are comparable with the findings of multiple kinematic and dynamic parameters derived from optical motion capture system and force platform which are widely used as gold standard.
    Matched MeSH terms: Gait/physiology*
  2. Ng H, Tan WH, Abdullah J, Tong HL
    ScientificWorldJournal, 2014;2014:376569.
    PMID: 25143972 DOI: 10.1155/2014/376569
    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases.
    Matched MeSH terms: Gait/physiology*
  3. Khalaj N, Abu Osman NA, Mokhtar AH, Mehdikhani M, Wan Abas WA
    Proc Inst Mech Eng H, 2014 Feb;228(2):190-9.
    PMID: 24458100 DOI: 10.1177/0954411914521155
    The knee adduction moment represents the medial knee joint load, and greater value is associated with higher load. In people with knee osteoarthritis, it is important to apply proper treatment with the least side effects to reduce knee adduction moment and, consequently, reduce medial knee joint load. This reduction may slow the progression of knee osteoarthritis. The research team performed a literature search of electronic databases. The search keywords were as follows: knee osteoarthritis, knee adduction moment, exercise program, exercise therapy, gait retraining, gait modification and knee joint loading. In total, 12 studies were selected, according to the selection criteria. Findings from previous studies illustrated that exercise and gait retraining programs could alter knee adduction moment in people with knee osteoarthritis. These treatments are noninvasive and nonpharmacological which so far have no or few side effects, as well as being low cost. The results of this review revealed that gait retraining programs were helpful in reducing the knee adduction moment. In contrast, not all the exercise programs were beneficial in reducing knee adduction moment. Future studies are needed to indicate best clinical exercise and gait retraining programs, which are most effective in reducing knee adduction moment in people with knee osteoarthritis.
    Study design: systematic review
    Matched MeSH terms: Gait/physiology*
  4. Gindre C, Lussiana T, Hebert-Losier K, Mourot L
    Int J Sports Med, 2016 Jan;37(1):25-9.
    PMID: 26509380 DOI: 10.1055/s-0035-1555931
    Biomechanical parameters are often analyzed independently, although running gait is a dynamic system wherein changes in one parameter are likely to affect another. Accordingly, the Volodalen® method provides a model for classifying running patterns into 2 categories, aerial and terrestrial, using a global subjective rating scoring system. We aimed to validate the Volodalen® method by verifying whether the aerial and terrestrial patterns, defined subjectively by a running coach, were associated with distinct objectively-measured biomechanical parameters. The running patterns of 91 individuals were assessed subjectively using the Volodalen® method by an expert running coach during a 10-min running warm-up. Biomechanical parameters were measured objectively using the OptojumpNext® during a 50-m run performed at 3.3, 4.2, and 5 m·s(-1) and were compared between aerial- and terrestrial-classified subjects. Longer contact times and greater leg compression were observed in the terrestrial compared to the aerial runners. The aerial runners exhibited longer flight time, greater center of mass displacement, maximum vertical force and leg stiffness than the terrestrial ones. The subjective categorization of running patterns was associated with distinct objectively-quantified biomechanical parameters. Our results suggest that a subjective holistic assessment of running patterns provides insight into the biomechanics of running gaits of individuals.
    Matched MeSH terms: Gait/physiology*
  5. Zulkifli SS, Loh WP
    Foot Ankle Surg, 2020 Jan;26(1):25-32.
    PMID: 30600155 DOI: 10.1016/j.fas.2018.12.005
    The science of foot pressure studies the forces acting on the bottom and different regions of the foot along with the pressure exerted on the plantar surface with the interacting surface in contact. The information derived gave impact to human biomechanical assessment on body balance and ergonomics posture during gait. Various experiments designed at generating foot pressure data returns only with limited knowledge generated. Obviously, the procedure for experiment design needs to be properly understood from the foot morphology aspects; healthiness, footwear, surface in contact, load and forces impacts, and the foot sensitivity as well as the specification for the foot pressure. This paper reviews the proper preliminary experimental setups for foot pressure measurement analysis during static or dynamic gait. The strength and limitations of recent devices used and considerable variables are also discussed. The overall review explains that the comfortable natural gait in relation to the aspects of sensitivity, load, time duration, and stability are the standard considerations for plantar pressure experiments.
    Matched MeSH terms: Gait/physiology*
  6. Singh VA, Ramalingam S, Haseeb A, Yasin NFB
    J Orthop Surg (Hong Kong), 2020 7 23;28(2):2309499020941659.
    PMID: 32696708 DOI: 10.1177/2309499020941659
    INTRODUCTION: Limb length discrepancy (LLD) of lower extremities is underdiagnosed due to compensatory mechanisms during locomotion. The natural course of compensation leads to biomechanical alteration in human musculoskeletal system leading to adverse effects. General consensus accepts LLD more than 2 cm as significant to cause biomechanical alteration. No studies were conducted correlating height and lower extremities true length (TL) to signify LLD. Examining significant LLD in relation to height and TL using dynamic gait analysis with primary focus on kinematics and secondary focus on kinetics would provide an objective evaluation method.

    METHODOLOGY: Forty participants with no evidence of LLD were recruited. Height and TL were measured. Reflective markers were attached at specific points in lower extremity and subjects walked in gait lab at a self-selected normal walking pace with artificial LLDs of 0, 1, 2, 3, and 4 cm simulated using shoe raise. Accommodation period of 30 min was given. Infrared cameras were used to capture the motion. Primary kinematic (knee flexion and pelvic obliquity (PO)) and secondary kinetic (ground reaction force (GRF)) were measured at right heel strike and left heel strike. Functional adaptation was analyzed and the postulated predictor indices (PIs) were used as a screening tool using height, LLD, and TL to notify significance.

    RESULTS: There was a significant knee flexion component seen in height category of less than 170 cm. There was significant difference between LLD 3 cm and 4 cm. No significant changes were seen in PO and GRF. PIs of LLD/height and LLD/TL were analyzed using receiver operating characteristic curve. LLD/height as a PI with value of 1.75 was determined with specificity of 80% and sensitivity of 76%.

    CONCLUSION: A height of less than 170 cm has significant changes in relation to LLD. PI using LLD/height appears to be a promising tool to identify patients at risk.

    Matched MeSH terms: Gait/physiology*
  7. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Proc Inst Mech Eng H, 2020 Jul;234(7):749-757.
    PMID: 32459132 DOI: 10.1177/0954411920924525
    The conservative techniques of treating knee osteoarthritis (kOA) include wearing orthoses such as knee braces and laterally wedged insoles and applying gait modification techniques such as toe-in gait and toe-out gait. This study aimed at assessing the immediate effects of these techniques in improving physical function of healthy and kOA participants. Five Osteoarthritis Research Society International (OARSI) recommended performance-based tests were randomly applied to measure physical function: (1) 30-second chair stand test (30CST), (2) 40-m (4 × 10) fast-paced walk test (40FPW), (3) stair climb test (SCT), (4) timed up and go test (TUGT) and (5) 6-minute walk test (6MWT) during a single-visit on 20 healthy and 20 kOA patients (age: 59.5 ± 7.33 and 61.5 ± 8.63 years, BMI: 69.95 ± 9.86 and 70.45 ± 8.80 kg/m2). The interventions included natural gait, toe-out gait, toe-in gait, laterally wedged insoles and knee brace. Analysis was performed through repeated-measures ANOVA and independent sample t-test. 30CST and TUGT showed no significant differences for the five test conditions (p > 0.05). Toe-out showed profound effects via pairwise comparison in impairing the physical function while knee brace improved it during 40FPW, SCT and 6MWT. In general, all the tested conservative techniques except laterally wedged insoles had immediate effects on physical performance measures in both healthy and medial knee osteoarthritis participants. The valgus knee brace improved the parameters the most, while toe-out gait impaired them the most. Future studies can develop strategies for improving gait retraining methods on the basis of issues identified by this study.
    Matched MeSH terms: Gait/physiology*
  8. Zanudin A, Mercer TH, Jagadamma KC, van der Linden ML
    Gait Posture, 2017 10;58:30-40.
    PMID: 28711651 DOI: 10.1016/j.gaitpost.2017.07.005
    Availability of outcome measures (OMs) with robust psychometric properties is an essential prerequisite for the evaluation of interventions designed to address gait deterioration in young people with Cerebral Palsy (CP). This review evaluates evidence for the reliability, validity and responsiveness of outcome measures of gait quality and walking performance in young people with CP. A systematic search was performed in MEDLINE, CINAHL, PubMed and Scopus. Articles that met the eligibility criteria were selected. Methodological quality of studies was independently rated by two raters using the modified COnsensus-based Standard for the selection of health status Measurement INstruments checklist. Strength of evidence was rated using standardised guidelines. Best evidence synthesis was scored according to Cochrane criteria. Fifty-one articles reporting on 18 distinct OMs were included for review. Best evidence synthesis indicated a moderate to strong evidence for the reliability for OMs of walking performance but conflicting evidence for the reliability of OMs of gait quality. The evidence for responsiveness for all OMs included in this review was rated as 'unknown'. The limitations of using the modified COSMIN scoring for small sample sizes are acknowledged. Future studies of high methodological quality are needed to explore the responsiveness of OMs assessing gait quality and walking performance in young people with CP.
    Matched MeSH terms: Gait/physiology*
  9. Mehdizadeh S
    Gait Posture, 2018 Feb;60:241-250.
    PMID: 29304432 DOI: 10.1016/j.gaitpost.2017.12.016
    The largest Lyapunov exponent (LyE) is an accepted method to quantify gait stability in young and old adults. However, a range of LyE values has been reported in the literature for healthy young and elderly adults in normal walking. Therefore, it has been impractical to use the LyE as a clinical measure of gait stability. The aims of this systematic review were to summarize different methodological approaches of quantifying LyE, as well as to classify LyE values of different body segments and joints in young and elderly individuals during normal walking. The Pubmed, Ovid Medline, Scopus and ISI Web of Knowledge databases were searched using keywords related to gait, stability, variability, and LyE. Only English language articles using the Lyapunov exponent to quantify the stability of healthy normal young and old subjects walking on a level surface were considered. 102 papers were included for full-text review and data extraction. Data associated with the walking surface, data recording method, sampling rate, walking speed, body segments and joints, number of strides/steps, variable type, filtering, time-normalizing, state space dimension, time delay, LyE algorithm, and the LyE values were extracted. The disparity in implementation and calculation of the LyE was from, (i) experiment design, (ii) data pre-processing, and (iii) LyE calculation method. For practical implementation of LyE as a measure of gait stability in clinical settings, a standard and universally accepted approach of calculating LyE is required. Therefore, future studies should look for a standard and generalized procedure to apply and calculate LyE.
    Matched MeSH terms: Gait/physiology*
  10. Marconi G, Gopalai AA, Chauhan S
    Med Biol Eng Comput, 2023 May;61(5):1167-1182.
    PMID: 36689083 DOI: 10.1007/s11517-023-02778-2
    This simulation study aimed to explore the effects of mass and mass distribution of powered ankle-foot orthoses, on net joint moments and individual muscle forces throughout the lower limb. Using OpenSim inverse kinematics, dynamics, and static optimization tools, the gait cycles of ten subjects were analyzed. The biomechanical models of these subjects were appended with ideal powered ankle-foot orthoses of different masses and actuator positions, as to determine the effect that these design factors had on the subject's kinetics during normal walking. It was found that when the mass of the device was distributed more distally and posteriorly on the leg, both the net joint moments and overall lower limb muscle forces were more negatively impacted. However, individual muscle forces were found to have varying results which were attributed to the flow-on effect of the orthosis, the antagonistic pairing of muscles, and how the activity of individual muscles affect each other. It was found that mass and mass distribution of powered ankle-foot orthoses could be optimized as to more accurately mimic natural kinetics, reducing net joint moments and overall muscle forces of the lower limb, and must consider individual muscles as to reduce potentially detrimental muscle fatigue or muscular disuse. OpenSim modelling method to explore the effect of mass and mass distribution on muscle forces and joint moments, showing potential mass positioning and the effects of these positions, mass, and actuation on the muscle force integral.
    Matched MeSH terms: Gait/physiology
  11. Haque F, Reaz MBI, Chowdhury MEH, Ezeddin M, Kiranyaz S, Alhatou M, et al.
    Sensors (Basel), 2022 May 05;22(9).
    PMID: 35591196 DOI: 10.3390/s22093507
    Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due to DN and DFU by studying muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we propose using Machine learning techniques to identify DN and DFU patients by using EMG and GRF data. We collected a dataset from the literature which involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and different feature extraction techniques were applied to extract the best features from the signals. The extracted feature list was ranked using four different feature ranking techniques, and highly correlated features were removed. In this study, we considered different combinations of muscles and GRF components to find the best performing feature list for the identification of DN and DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model (KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm and optimized that model. We trained the optimized the ML algorithm for different combinations of muscles and GRF component features, and the performance matrix was evaluated. Our study found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from the chi-square feature ranking technique for features from GL and VL muscles combined. In the GRF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal. In conclusion, our study has shown a potential solution for ML application in DN and DFU patient identification using EMG and GRF parameters. With careful signal preprocessing with strategic feature extraction from the biomechanical parameters, optimization of the ML model can provide a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and GRF signals.
    Matched MeSH terms: Gait/physiology
  12. Zahari Z, Naga DNA, Bukry SA
    Med J Malaysia, 2024 Mar;79(Suppl 1):168-175.
    PMID: 38555902
    INTRODUCTION: Lower Cross Syndrome (LCS) is a prevalent condition that manifests as muscular tension due to the asymmetry in the strength of the lower extremity muscles. This imbalance could be due to the tautness of the iliopsoas, rectus femoris, tensor fascia latae, adductor group, gastrocnemius, and soleus muscles. LCS causes a postural imbalance in the individual, which triggers low back pain (LBP). When LCS is present alongside LBP, may cause the upper body to sway more in the transverse plane and at the lumbar level, making walking and termination of gait (GT) more difficult. However, the evidence of motor control and gait performance is scarce with inconclusive findings. Thus, this study aimed to review motor control on gait performance among individuals with lower crossed syndrome. This review is conducted to determine the motor control on gait performance in patients with LCS and how the conditions affect gait.

    MATERIALS AND METHODS: The databases Google Scholar, Science Direct, ResearchGate, PubMed, and Scopus were searched to identify potentially relevant documents. The keywords used for the search included "motor control" OR "motor learning" OR" core stability" AND "lower crossed syndrome" AND "gait". The search includes articles published between 1970 and 2022 and written in English. It is excluded when the paper is not a full-text article. After finding the articles, the information was extracted, including author, year of publication, country, objective, type of study, and motor control analysis summary.

    RESULTS: There were 107 articles retrieved from the search. but only seventeen articles were included for analysis. The finding demonstrates that LCS may associate with LBP and reduces the motor control of the core muscle stability which indirectly influences gait performance.

    CONCLUSIONS: This study suggests that individuals with LCS will have an alteration in their gait. However, there is still insufficient information on motor control in gait performance among lower crossed syndrome. Further research is needed to find what factors that may contribute to the adaptation of motor control in gait among LCS population.

    Matched MeSH terms: Gait/physiology
  13. Justine M, Manaf H, Sulaiman A, Razi S, Alias HA
    Biomed Res Int, 2014;2014:640321.
    PMID: 24977154 DOI: 10.1155/2014/640321
    This study compares energy expenditure (EE), gait parameters (GP), and level of fatigue (LOF) between 5-minute walking with sharp turning (ST) and corner turning (CT). Data were obtained from 29 community-dwelling elderly (mean age, 62.7 ± 3.54 years). For 5 minutes, in ST task, participants walked on a 3-meter pathway with 2 cones placed at each end (180° turning), while in CT task, participants walked on a 6-meter pathway with 4 cones placed at 4 corners (90° turning). The physiological cost index, pedometer, and 10-point Modified Borg Dyspnoea Scale were used to measure EE (beats/min), GP (no of steps), and LOF, respectively. Data were analyzed by using independent t-tests. EE during ST (0.62 ± 0.21 beats/min) was significantly higher than CT (0.48 ± 0.17 beats/min) (P < 0.05). GP (434 ± 92.93 steps) and LOF (1.40 ± 1.11) in ST were found to be lower compared to GP (463 ± 92.18 steps) and LOF (1.54 ± 1.34) in CT (All, P > 0.05). Higher EE in ST could be due to the difficulty in changing to a 180° direction, which may involve agility and different turning strategies (step-turn or pivot-turn) to adjust the posture carefully. In CT, participants could choose a step-turn strategy to change to a 90° direction, which was less challenging to postural control.
    Matched MeSH terms: Gait/physiology*
  14. Ali S, Abu Osman NA, Eshraghi A, Gholizadeh H, Abd Razak NA, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2013 Nov-Dec;28(9-10):994-9.
    PMID: 24161521 DOI: 10.1016/j.clinbiomech.2013.09.004
    Transtibial amputees encounter stairs and steps during their daily activities. The excessive pressure between residual limb/socket may reduce the walking capability of transtibial prosthetic users during ascent and descent on stairs. The purposes of the research were to evaluate the interface pressure between Dermo (shuttle lock) and Seal-In X5 (prosthetic valve) interface systems during stair ascent and descent, and to determine their satisfaction effects on users.
    Matched MeSH terms: Gait/physiology*
  15. Aboutorabi A, Saeedi H, Kamali M, Farahmand B, Eshraghi A, Dolagh RS
    Prosthet Orthot Int, 2014 Jun;38(3):218-23.
    PMID: 23986466 DOI: 10.1177/0309364613496111
    BACKGROUND: Flat foot in children is a common deformity in which the medial longitudinal arch is reduced or eliminated.
    OBJECTIVES: The objective of this article was to compare flat foot and healthy children on the displacement of the center of pressure and walking parameters in children with two common orthoses (functional foot orthosis and medical shoe).
    STUDY DESIGN: Comparative study.
    METHODS: This study included 30 children with flat foot and 20 healthy children as a control group. The step length and width, walking velocity, symmetry, and center of pressure (CoP) displacements were recorded and compared for three conditions: functional foot orthosis and regular shoe, a medical shoe and barefoot.
    RESULTS: The results from the CoP displacements showed that the regular shoe with functional foot orthosis caused a significant decrease in the level of displacement of the CoP in flat foot children. The findings indicated a significant improvement in symmetry of steps and walking speed with the functional foot orthosis in comparison to the medical shoe in flat foot children.
    CONCLUSION: The CoP displacement was decreased and the percentage of gait symmetry and walking speed were increased by the use of regular shoes with a functional foot orthosis in comparison to the medical shoes.
    CLINICAL RELEVANCE: An orthopaedic shoe can be expensive, and in particular heavy with most children reluctant to wear it. This study focussed on the CoP displacement and selected gait parameters with an orthopaedic shoe and functional foot orthosis, and showed that a combined prescription of a functional foot orthosis and with regular shoes may be a useful alternative for children with moderate flat foot.
    KEYWORDS: Center of pressure; flexible flat foot; functional foot orthosis; gait; medical shoe
    Matched MeSH terms: Gait/physiology*
  16. Senanayake CM, Senanayake SM
    IEEE Trans Inf Technol Biomed, 2010 Sep;14(5):1173-9.
    PMID: 20801745 DOI: 10.1109/TITB.2010.2058813
    An intelligent gait-phase detection algorithm based on kinematic and kinetic parameters is presented in this paper. The gait parameters do not vary distinctly for each gait phase; therefore, it is complex to differentiate gait phases with respect to a threshold value. To overcome this intricacy, the concept of fuzzy logic was applied to detect gait phases with respect to fuzzy membership values. A real-time data-acquisition system was developed consisting of four force-sensitive resistors and two inertial sensors to obtain foot-pressure patterns and knee flexion/extension angle, respectively. The detected gait phases could be further analyzed to identify abnormality occurrences, and hence, is applicable to determine accurate timing for feedback. The large amount of data required for quality gait analysis necessitates the utilization of information technology to store, manage, and extract required information. Therefore, a software application was developed for real-time acquisition of sensor data, data processing, database management, and a user-friendly graphical-user interface as a tool to simplify the task of clinicians. The experiments carried out to validate the proposed system are presented along with the results analysis for normal and pathological walking patterns.
    Matched MeSH terms: Gait/physiology*
  17. Lee SH, Lee OS, Teo SH, Lee YS
    Gait Posture, 2017 09;57:57-68.
    PMID: 28577508 DOI: 10.1016/j.gaitpost.2017.05.023
    We conducted a meta-analysis to analyze how high tibial osteotomy (HTO) changes gait and focused on the following questions: (1) How does HTO change basic gait variables? (2) How does HTO change the gait variables in the knee joint? Twelve articles were included in the final analysis. A total of 383 knees was evaluated. There were 237 open wedge (OW) and 143 closed wedge (CW) HTOs. There were 4 level II studies and 8 level III studies. All studies included gait analysis and compared pre- and postoperative values. One study compared CWHTO and unicompartmental knee arthroplasty (UKA), and another study compared CWHTO and OWHTO. Five studies compared gait variables with those of healthy controls. One study compared operated limb gait variables with those in the non-operated limb. Gait speed, stride length, knee adduction moment, and lateral thrust were major variables assessed in 2 or more studies. Walking speed increased and stride length was increased or similar after HTO compared to the preoperative value in basic gait variables. Knee adduction moment and lateral thrust were decreased after HTO compared to the preoperative knee joint gait variables. Change in co-contraction of the medial side muscle after surgery differed depending on the degree of frontal plane alignment. The relationship between change in knee adduction moment and change in mechanical axis angle was controversial. Based on our systematic review and meta-analysis, walking speed and stride length increased after HTO. Knee adduction moment and lateral thrust decreased after HTO compared to the preoperative values of gait variables in the knee joint.
    Matched MeSH terms: Gait/physiology*
  18. Sado F, Yap HJ, Ghazilla RAR, Ahmad N
    PLoS One, 2018;13(7):e0200193.
    PMID: 30001415 DOI: 10.1371/journal.pone.0200193
    Prolong walking is a notable risk factor for work-related lower-limb disorders (WRLLD) in industries such as agriculture, construction, service profession, healthcare and retail works. It is one of the common causes of lower limb fatigue or muscular exhaustion leading to poor balance and fall. Exoskeleton technology is seen as a modern strategy to assist worker's in these professions to minimize or eliminate the risk of WRLLDs. Exoskeleton has potentials to benefit workers in prolong walking (amongst others) by augmenting their strength, increasing their endurance, and minimizing high muscular activation, resulting in overall work efficiency and productivity. Controlling exoskeleton to achieve this purpose for able-bodied personnel without impeding their natural movement is, however, challenging. In this study, we propose a control strategy that integrates a Dual Unscented Kalman Filter (DUKF) for trajectory generation/prediction of the spatio-temporal features of human walking (i.e. joint position, and velocity, and acceleration) and an impedance cum supervisory controller to enable the exoskeleton to follow this trajectory to synchronize with the human walking. Experiment is conducted with four subjects carrying a load and walking at their normal speed- a typical scenario in industries. EMG signals taken at two muscles: Right Vastus Intermedius (on the thigh) and Right Gastrocnemius (on the calf) indicated reduction in muscular activation during the experiment. The results also show the ability of the control system to predict spatio-temporal features of the pilots' walking and to enable the exoskeleton to move in concert with the pilot.
    Matched MeSH terms: Gait/physiology
  19. Gholizadeh H, Lemaire ED, Eshraghi A
    Clin Biomech (Bristol, Avon), 2016 08;37:108-116.
    PMID: 27423025 DOI: 10.1016/j.clinbiomech.2016.06.005
    BACKGROUND: An optimal suspension system can improve comfort and quality of life in people with limb loss. To guide practice on prosthetic vacuum suspension systems, assessment of the current evidence and professional opinion are required.

    METHODS: PubMed, Web of Science, and Google Scholar databases were explored to find related articles. Search terms were amputees, artificial limb, prosthetic suspension, prosthetic liner, vacuum, and prosthesis. The results were refined by vacuum socket or vacuum assisted suspension or sub-atmospheric suspension. Study design, research instrument, sample size, and outcome measures were reviewed. An online questionnaire was also designed and distributed worldwide among professionals and prosthetists (www.ispoint.org, OANDP-L, LinkedIn, personal email).

    FINDINGS: 26 articles were published from 2001 to March 2016. The number of participants averaged 7 (SD=4) for transtibial and 6 (SD=6) for transfemoral amputees. Most studies evaluated the short-term effects of vacuum systems by measuring stump volume changes, gait parameters, pistoning, interface pressures, satisfaction, balance, and wound healing. 155 professionals replied to the questionnaire and supported results from the literature. Elevated vacuum systems may have some advantages over the other suspension systems, but may not be appropriate for all people with limb loss.

    INTERPRETATION: Elevated vacuum suspension could improve comfort and quality of life for people with limb loss. However, future investigations with larger sample sizes are needed to provide strong statistical conclusions and to evaluate long-term effects of these systems.

    Matched MeSH terms: Gait/physiology
  20. Mortaza N, Abu Osman NA, Mehdikhani N
    Eur J Phys Rehabil Med, 2014 Dec;50(6):677-91.
    PMID: 24831570
    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not sufficient and cannot act as a reliable predictor of falls in elderly individuals.
    Matched MeSH terms: Gait/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links