Displaying all 6 publications

Abstract:
Sort:
  1. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al.
    Nature, 2022 Jan;601(7893):434-439.
    PMID: 34937944 DOI: 10.1038/s41586-021-04246-z
    The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.
    Matched MeSH terms: Genes, myc
  2. Tang YQ, Jaganath IB, Manikam R, Sekaran SD
    Int J Med Sci, 2014;11(6):564-77.
    PMID: 24782645 DOI: 10.7150/ijms.7704
    Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells.
    Matched MeSH terms: Genes, myc/genetics*
  3. Tan ML, Muhammad TS, Najimudin N, Sulaiman SF
    J Ethnopharmacol, 2005 Jan 15;96(3):375-83.
    PMID: 15619555
    Epipremnum pinnatum (L.) Engl. hexane extract produced a significant growth inhibition against T-47D breast carcinoma cells and analysis of cell death mechanisms indicated that the extract elicited a non-apoptotic programmed cell death. T-47D cells exposed to the extract at EC(50) concentration (72 h) for 24 h failed to demonstrate typical DNA fragmentation associated with apoptosis, as carried out using a modified TUNEL assay. In addition, acute exposure to the extract produced an insignificant regulation of caspase-3 and p53 mRNA expression but increased in the c-myc mRNA expression. Ultrastructural analysis using transmission electron microscope demonstrated distinct vacuolated cells, which strongly indicated a Type II non-apoptotic cell death although the changes in chromatin were also detected. The presence of non-apoptotic programmed cell death was then reconfirmed with annexin-V and propidium iodide staining. These findings suggested that up-regulation of c-myc mRNA expression may have contributed to the growth arrest and Type II non-apoptotic programmed cell death in the Epipremnum pinnatum (L.) Engl. hexane extract-treated T-47D cells.
    Matched MeSH terms: Genes, myc*
  4. Naidu R, Wahab NA, Yadav M, Kutty MK
    Int J Mol Med, 2002 Feb;9(2):189-96.
    PMID: 11786932
    Overexpression of c-myc protein and amplification of c-myc were investigated by immunohistochemistry and differential polymerase chain reaction (dPCR) in 440 formalin-fixed primary breast carcinoma tissues, respectively. Overexpression of c-myc was detected in 45% (199/440) and amplification of c-myc was observed in 25% (112/440) of the primary breast carcinomas. Immunolocalization of c-myc oncoprotein was demonstrated in 35% (8/23) of the comedo subtype, 17% (3/18) of the non-comedo subtype, 37% (15/41) of the comedo DCIS and 49% (20/41) of the adjacent invasive ductal carcinomas, 21% (4/19) of the non-comedo DCIS and 37% (7/19) of the adjacent invasive lesions, 49% (133/270) of the invasive ductal carcinomas, 33% (11/33) of the invasive lobular carcinomas, 29% (6/21) of the colloid carcinomas and 47% (7/15) of the medullary carcinomas. C-myc was amplified in 13% (3/23) of the comedo DCIS, 17% (7/41) of the comedo DCIS and 24% (10/41) of the adjacent invasive ductal carcinomas, 30% (82/270) of the invasive ductal carcinomas, 21% (7/33) of the invasive lobular carcinomas, 14% (3/21) of the colloid carcinomas and 24% (4/15) of the medullary carcinomas. Amplification of c-myc was noted in 16% (3/9) of the invasive ductal carcinomas but not in the adjacent non-comedo DCIS lesions. A significant association (P<0.05) was observed between in situ components and adjacent invasive lesions for c-myc expression and amplification. Overexpression of c-myc protein was significantly correlated with poorly differentiated (P<0.05) and high proliferation index (Ki-67) (P<0.05) tumors but not with lymph node metastases (P>0.05), patient age (P>0.05) and estrogen receptor status (P>0.05). Significant relationship was also noted between amplification of c-myc and absence of estrogen receptor (P<0.05), high histological grade (P<0.05) and high proliferation index (Ki-67) (P<0.05). No relationship was seen with nodal status (P>0.05) and patient age (P>0.05). Majority of the Malaysian female patients are from younger age group (<50 years old) but overexpression and amplification of c-myc was not statistically associated with patient age (P>0.05) indicating that these alterations may be independent events of patient age. The above observations suggest that overexpression and amplification of c-myc could play an important role in tumor progression from non-invasive to invasive and, also, it may have the potential as a marker of poor prognosis of breast cancer.
    Matched MeSH terms: Genes, myc/genetics*
  5. Wn Najmiyah WAW, Azlan H, Faezahtul AH
    Med J Malaysia, 2020 03;75(2):98-102.
    PMID: 32281588
    INTRODUCTION: In recent years, "double hit" and "double protein" involving gene rearrangement and protein expression of c-MYC and BCL2 and/or BCL6 are the most used terms to describe poor prognostic factors in diffuse large B-cell lymphoma (DLBCL). This study was to determine the frequency of double or triple protein expression by using immunohistochemistry (IHC) and comparing the result with clinicopathological features and cell of origin (COO) classification.

    METHODS: We conducted a cross-sectional study by using 29 archived formalin-fixed paraffin embedded tissue blocks of DLBCL. All the samples were evaluated for the subgrouping of COO DLBCL was determined by expression of CD10, BCL6 and MUM1 based on Hans classification. In addition, expressions of c-MYC, BCL2 and BCL6 were detected by IHC.

    RESULTS: Among the 29 cases, MYC, BCL2 and BCL6 proteins were detected in 72.4%, 62.1% and 62.1% of patients, respectively. Concurrent expression (c-MYC positive/BCL2 positive and/or BCL6 positive) was present in 58.6% of patients. 34.5% were categorised as germinal centre like (GCB) subgroup and 65.5% were categorised as nongerminal centre like (non-GCB) subgroup. Among the clinicopathological features, the double/triple protein expression lymphoma was significantly associated with elevated LDH level (p=0.018), IPI score (p=0.003), Ann Arbor stage (p=0.011) and complete response rate (p=0.011).

    CONCLUSION: Double/triple protein lymphoma was strongly associated more adverse clinical risk factors. Thus, analyses of MYC, BCL2 and BCL6 expression by IHC represents a rapid and inexpensive approach to risk-stratify patients with DLBCL at diagnosis.

    Matched MeSH terms: Genes, myc
  6. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, et al.
    Lipids, 2004 May;39(5):459-67.
    PMID: 15506241
    It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
    Matched MeSH terms: Genes, myc
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links