Displaying all 15 publications

Abstract:
Sort:
  1. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, et al.
    Mol Divers, 2021 May;25(2):995-1009.
    PMID: 32301032 DOI: 10.1007/s11030-020-10084-4
    The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors
  2. Jamil W, Perveen S, Shah SA, Taha M, Ismail NH, Perveen S, et al.
    Molecules, 2014 Jun 25;19(7):8788-802.
    PMID: 24968334 DOI: 10.3390/molecules19078788
    Phenoxyacetohydrazide Schiff base analogs 1-28 have been synthesized and their in vitro β-glucouoronidase inhibition potential studied. Compounds 1 (IC50=9.20±0.32 µM), 5 (IC50=9.47±0.16 µM), 7 (IC50=14.7±0.19 µM), 8 (IC50=15.4±1.56 µM), 11 (IC50=19.6±0.62 µM), 12 (IC50=30.7±1.49 µM), 15 (IC50=12.0±0.16 µM), 21 (IC50=13.7±0.40 µM) and 22 (IC50=22.0±0.14 µM) showed promising β-glucuronidase inhibition activity, better than the standard (D-saccharic acid-1,4-lactone, IC50=48.4±1.25 µM).
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  3. Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3624-35.
    PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002
    Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors
  4. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Med Chem, 2015 Jul 1;23(13):3119-25.
    PMID: 26001340 DOI: 10.1016/j.bmc.2015.04.081
    A library of novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone (3a-3r) was synthesized and evaluated for their potential as β-glucuronidase inhibitors. Several compounds such as 3a-3d, 3e-3j, 3l-3o, 3q and 3r showed excellent inhibitory potentials much better than the standard (IC50=48.4±1.25μM: d-saccharic acid 1,4-lactone). All the synthesized compounds were characterized satisfactorily by using different spectroscopic methods. We further evaluated the interaction of the active compounds and the enzyme active site with the help of docking studies.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  5. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, et al.
    Bioorg Chem, 2015 Aug;61:36-44.
    PMID: 26073618 DOI: 10.1016/j.bioorg.2015.05.010
    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  6. Khan KM, Rahim F, Wadood A, Taha M, Khan M, Naureen S, et al.
    Bioorg Med Chem Lett, 2014 Apr 1;24(7):1825-9.
    PMID: 24602903 DOI: 10.1016/j.bmcl.2014.02.015
    Bisindole analogs 1-17 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50=1.62±0.04 μM), 6 (IC50=1.86±0.05 μM), 10 (IC50=2.80±0.29 μM), 9 (IC50=3.10±0.28 μM), 14 (IC50=4.30±0.08 μM), 2 (IC50=18.40±0.09 μM), 19 (IC50=19.90±1.05 μM), 4 (IC50=20.90±0.62 μM), 7 (IC50=21.50±0.77 μM), and 3 (IC50=22.30±0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50=48.40±1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  7. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Al Muqarrabin LM, et al.
    Bioorg Chem, 2016 10;68:15-22.
    PMID: 27414468 DOI: 10.1016/j.bioorg.2016.07.002
    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  8. Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, et al.
    Bioorg Chem, 2017 06;72:323-332.
    PMID: 28505547 DOI: 10.1016/j.bioorg.2017.05.005
    Natural products are the main source of motivation to design and synthesize new molecules for drug development. Designing new molecules against β-glucuronidase inhibitory is utmost essential. In this study indole analogs (1-35) were synthesized, characterized using various spectroscopic techniques including 1H NMR and EI-MS and evaluated for their β-glucuronidase inhibitory activity. Most compounds were identified as potent inhibitors for the enzyme with IC50 values ranging between 0.50 and 53.40μM, with reference to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure-activity relationship had been also established. The results obtained from docking studies for the most active compound 10 showed that hydrogen bond donor features as well as hydrogen bonding with (Oε1) of nucleophilic residue Glu540 is believed to be the most importance interaction in the inhibition activity. It was also observed that hydroxyl at fourth position of benzylidene ring acts as a hydrogen bond donor and interacts with hydroxyl (OH) on the side chain of catalysis residue Tyr508. The enzyme-ligand complexed were being stabilized through electrostatic π-anion interaction with acid-base catalyst Glu451 (3.96Å) and thus preventing Glu451 from functioning as proton donor residue.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  9. Taha M, Baharudin MS, Ismail NH, Selvaraj M, Salar U, Alkadi KA, et al.
    Bioorg Chem, 2017 04;71:86-96.
    PMID: 28160943 DOI: 10.1016/j.bioorg.2017.01.015
    Novel sulfonamides having oxadiazole ring were synthesized by multistep reaction and evaluated to check in vitro β-glucuronidase inhibitory activity. Luckily, except compound 13, all compounds were found to demonstrate good inhibitory activity in the range of IC50=2.40±0.01-58.06±1.60μM when compared to the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure activity relationship was also presented. However, in order to ensure the SAR as well as the molecular interactions of compounds with the active site of enzyme, molecular docking studies on most active compounds 19, 16, 4 and 6 was carried out. All derivatives were fully characterized by 1H NMR, 13C NMR and EI-MS spectroscopic techniques. CHN analysis was also presented.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  10. Salar U, Khan KM, Syed S, Taha M, Ali F, Ismail NH, et al.
    Bioorg Chem, 2017 02;70:199-209.
    PMID: 28069264 DOI: 10.1016/j.bioorg.2016.12.011
    Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1H NMR and 13C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC50=3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  11. Taha M, Ullah H, Al Muqarrabun LMR, Khan MN, Rahim F, Ahmat N, et al.
    Eur J Med Chem, 2018 Jan 01;143:1757-1767.
    PMID: 29133042 DOI: 10.1016/j.ejmech.2017.10.071
    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1HNMR, 13CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  12. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Khan H, et al.
    Bioorg Chem, 2016 10;68:56-63.
    PMID: 27454618 DOI: 10.1016/j.bioorg.2016.07.008
    Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  13. Salar U, Khan KM, Taha M, Ismail NH, Ali B, Qurat-Ul-Ain, et al.
    Eur J Med Chem, 2017 Jan 05;125:1289-1299.
    PMID: 27886546 DOI: 10.1016/j.ejmech.2016.11.031
    Current study is based on the biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives 1-26, by treating metronidazole with different aryl and hetero-aryl carboxylic acids in the presence of 1,1'-carbonyl diimidazole (CDI) as a coupling agent. Structures of all synthetic derivatives were confirmed with the help of various spectroscopic techniques such as EI-MS, (1)H -NMR and (13)C NMR. CHN elemental analyses were also found in agreement with the calculated values. Synthetic derivatives were evaluated to check their β-glucuronidase inhibitory activity which revealed that except few derivatives, all demonstrated good inhibition in the range of IC50 = 1.20 ± 0.01-60.30 ± 1.40 μM as compared to the standard d-saccharic acid 1,4-lactone (IC50 = 48.38 ± 1.05 μM). Compounds 1, 3, 4, 6, 9-19, and 21-24 were found to be potent analogs and showed superior activity than standard. Limited structure-activity relationship is suggested that the molecules having electron withdrawing groups like NO2, F, Cl, and Br, were displayed better activity than the compounds with electron donating groups such as Me, OMe and BuO. To verify these interpretations, in silico study was also performed, a good correlation was observed between bioactivities and docking studies.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  14. Bano B, Arshia, Khan KM, Kanwal, Fatima B, Taha M, et al.
    Eur J Med Chem, 2017 Oct 20;139:849-864.
    PMID: 28865280 DOI: 10.1016/j.ejmech.2017.08.052
    In this study synthesis and β-glucuronidase inhibitory potential of 3/5/8 sulfonamide and 8-sulfonate derivatives of quinoline (1-40) are discussed. Studies reveal that all the synthetic compounds were found to have good inhibitory activity against β-glucuronidase. Nonetheless, compounds 1, 2, 5, 13, and 22-24 having IC50 values in the range of 1.60-8.40 μM showed superior activity than the standard saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Moreover, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. Structures of all the synthetic compounds were confirmed through (1)H NMR, EI-MS and HREI-MS spectroscopic techniques.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
  15. Taha M, Arbin M, Ahmat N, Imran S, Rahim F
    Bioorg Chem, 2018 04;77:47-55.
    PMID: 29331764 DOI: 10.1016/j.bioorg.2018.01.002
    Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established.
    Matched MeSH terms: Glucuronidase/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links