Displaying all 8 publications

Abstract:
Sort:
  1. Chew FN, Tan WS, Tey BT
    J Biosci Bioeng, 2011 Feb;111(2):246-8.
    PMID: 21036662 DOI: 10.1016/j.jbiosc.2010.10.004
    A gel imaging method was employed to quantitate the GFP that had been subjected to denaturation and degradation treatments. This method is able to differentiate the nativity of GFP by relating the observed changes in the position of fluorescent bands which is unable to be detected using the spectrofluorometric method.
    Matched MeSH terms: Green Fluorescent Proteins/analysis*
  2. Chew FN, Tan WS, Ling TC, Tan CS, Tey BT
    Anal Biochem, 2009 Jan 15;384(2):353-5.
    PMID: 18952038 DOI: 10.1016/j.ab.2008.10.010
    Green fluorescent protein (GFP) is a versatile reporter protein and has been widely used in biological research. However, its quantitation requires expensive equipment such as a spectrofluorometer. In the current study, a gel documentation imaging system using a native polyacrylamide gel for the quantitation of GFP was developed. The assay was evaluated for its precision, linearity, reproducibility, and sensitivity in the presence of Escherichia coli cells and was compared with the spectrofluorometric method. Using this newly established, gel-based imaging technique; the amount of GFP can be quantified accurately.
    Matched MeSH terms: Green Fluorescent Proteins/analysis*
  3. Futra D, Heng LY, Ahmad A, Surif S, Ling TL
    Sensors (Basel), 2015 May 28;15(6):12668-81.
    PMID: 26029952 DOI: 10.3390/s150612668
    A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%-4.8% RSD (relative standard deviation) and 3.6%-5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay.
    Matched MeSH terms: Green Fluorescent Proteins/analysis*
  4. Cha TS, Yee W, Aziz A
    World J Microbiol Biotechnol, 2012 Apr;28(4):1771-9.
    PMID: 22805959 DOI: 10.1007/s11274-011-0991-0
    The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
  5. Nograles N, Abdullah S, Shamsudin MN, Billa N, Rosli R
    J Biosci Bioeng, 2012 Feb;113(2):133-40.
    PMID: 22093752 DOI: 10.1016/j.jbiosc.2011.10.003
    Alginate, a natural polysaccharide, was explored in this study as an oral delivery vehicle of a mammalian expression vector into the murine intestinal mucosa. Alginate microspheres were produced through water-in-oil (W/O) emulsification method. Average diameter sizes of microspheres were 46.88 μm±3.07 μm with significant size reduction upon utilization of 1.0% Span80. Plasmid DNA (pDNA) carrying green fluorescent protein reporter gene (GFP), pVAX-GFP, was encapsulated within microspheres at efficiencies of 72.9 to 74.4%, carrying maximum load of 6 μg pDNA. Alginate microspheres demonstrated shrinkage in pH 1.2 and swelling in pH 9.0 with pDNA release about twice the amount released in acidic environment. Oral delivery of pVAX-GFP loaded-microspheres, at 50 μg, 100 μg and 150 μg dose, was performed on BALB/c mice. Tissue biodistribution, investigated through flow cytometric analysis, demonstrated GFP positive intestinal cells (<1.0%) with 1.3-fold higher levels for the 100 μg dose; therefore suggesting feasibility of the approach for oral gene delivery and vaccination.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
  6. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
  7. Kumarasingha R, Palombo EA, Bhave M, Yeo TC, Lim DS, Tu CL, et al.
    Int J Parasitol, 2014 Apr;44(5):291-8.
    PMID: 24583111 DOI: 10.1016/j.ijpara.2014.01.008
    Traditional healers in Sarawak, Malaysia, use plants such as Picria fel-terrae, Linariantha bicolor and Lansium domesticum to treat gastrointestinal infections. This study aimed to test whether their nematocidal activities could be confirmed in vitro using highly standardised Caenorhabditis elegans models. We applied eight different ethanol solubilised plant extracts and two commercial anthelmintic drugs to larval and adult stages of C. elegans in vitro. Seven C. elegans strains were evaluated, one wild type and six strains with GFP-tagged stress response pathways to help characterise and compare the pathways affected by plant extracts. Our in vitro screen confirmed that both of the commercial anthelmintic drugs and five of the eight traditionally used plant extracts had significant nematocidal activity against both larval and adult C. elegans. The most effective extracts were from P. fel-terrae. The plant extracts triggered different stress response pathways from the commercial anthelmintic drugs. This study showed that using traditional knowledge of plant medicinal properties in combination with a C. elegans in vitro screen provided a rapid and economical test with a high hit rate compared with the random screening of plants for nematocidal activities. The use of transgenic C. elegans strains may allow this approach to be refined further to investigate the mode of action of active extracts.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
  8. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links