Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Nordin F, Hamid ZA, Chan L, Farzaneh F, Hamid MK
    Methods Mol Biol, 2016;1448:159-73.
    PMID: 27317180 DOI: 10.1007/978-1-4939-3753-0_12
    Non-integrating lentiviral vectors or also known as integrase-defective lentiviral (IDLV) hold a great promise for gene therapy application. They retain high transduction efficiency for efficient gene transfer in various cell types both in vitro and in vivo. IDLV is produced via a combined mutations introduced on the HIV-based lentiviral to disable their integration potency. Therefore, IDLV is considered safer than the wild-type integrase-proficient lentiviral vector as they could avoid the potential insertional mutagenesis associated with the nonspecific integration of transgene into target cell genome afforded by the wild-type vectors.Here we describe the system of IDLV which is produced through mutation in the integrase enzymes at the position of D64 located within the catalytic core domain. The efficiency of the IDLV in expressing the enhanced green fluorescent protein (GFP) reporter gene in transduced human monocyte (U937) cell lines was investigated. Expression of the transgene was driven by the spleen focus-forming virus (SFFV) LTRs. Transduction efficiency was studied using both the IDLV (ID-SFFV-GFP) and their wild-type counterparts (integrase-proficient SFFV-GFP). GFP expression was analyzed by fluorescence microscope and FACS analysis.Based on the results, the number of the GFP-positive cells in ID-SFFV-GFP-transduced U937 cells decreased rapidly over time. The percentage of GFP-positive cells decreased from ~50 % to almost 0, up to 10 days post-transduction. In wild-type SFFV-GFP-transduced cells, GFP expression is remained consistently at about 100 %. These data confirmed that the transgene expression in the ID-SFFV-GFP-transduced cells is transient in dividing cells. The lack of an origin of replication due to mutation of integrase enzymes in the ID-SFFV-GFP virus vector has caused the progressive loss of the GFP expression in dividing cells.Integrase-defective lentivirus will be a suitable choice for safer clinical applications. It preserves the advantages of the wild-type lentiviral vectors but with the benefit of transgene expression without stable integration into host genome, therefore reducing the potential risk of insertional mutagenesis.
    Matched MeSH terms: Green Fluorescent Proteins/genetics*
  2. Low PT, Lai MI, Ngai SC, Abdullah S
    Gene, 2014 Jan 1;533(1):451-5.
    PMID: 24120896 DOI: 10.1016/j.gene.2013.09.075
    Current viral gene delivery vectors for gene therapy are inefficient due to short-lived transgene expression attributed to the cytosine-phosphate-guanine (CpG) motifs in the transgene. Here we assessed the effects of CpG motif reduction in lentiviral (LV) gene delivery context on the level and duration of reporter gene expression in Chinese Hamster Ovary (CHO) cells, Human Immortalized Myelogenous Leukemia (K562) cells and hematopoietic stem cells (HSCs). The cells were transduced with LV carrying Zero-CpG green fluorescent protein (ZGFP) reporter gene, LV/CMV/ZGFP. The GFP expression was compared to its non CpG-depleted GFP reporter gene LV (LV/CMV/GFP) counterpart. The LV/CMV/ZGFP exhibited prolonged transgene expression in CHO cells and HSCs up to 10 days and 14 days, in the respective cells. This effect was not seen in the transduced K562 cells, which may be due to the DNA hypomethylation status of the cancer cell line. Transgene copy number analysis verified that the GFP expression was not from pseudo-transduction and the transgene remained in the genome of the cells throughout the period of the study. The modest positive effects from the LV/CMV/ZGFP suggest that the reduction of CpG in the LV construct was not substantial to generate higher and more prolonged transgene expression.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  3. Subach OM, Vlaskina AV, Agapova YK, Korzhenevskiy DA, Nikolaeva AY, Varizhuk AM, et al.
    Int J Mol Sci, 2022 Nov 23;23(23).
    PMID: 36498942 DOI: 10.3390/ijms232314614
    NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  4. Narayanan K, Lee CW, Radu A, Sim EU
    Anal Biochem, 2013 Aug 15;439(2):142-4.
    PMID: 23608053 DOI: 10.1016/j.ab.2013.04.010
    Successful gene delivery into mammalian cells using bactofection requires entry of the bacterial vector via cell surface integrin receptors followed by release of plasmid DNA into the cellular environment. We show, for the first time, that addition of the DNA transfection reagent Lipofectamine improves entry of invasive Escherichia coli into HeLa cells and enhances up to 2.8-fold green fluorescent protein (GFP) expression from a reporter plasmid. The addition of Lipofectamine may be applicable to other bacterial vectors to increase their DNA delivery efficiency into mammalian cells.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  5. Habib O, Mohd Sakri R, Ghazalli N, Chau DM, Ling KH, Abdullah S
    PLoS One, 2020;15(12):e0244386.
    PMID: 33347482 DOI: 10.1371/journal.pone.0244386
    CpG-free pDNA was reported to facilitate sustained transgene expression with minimal inflammation in vivo as compared to CpG-containing pDNA. However, the expression potential and impact of CpG-free pDNA in in vitro model have never been described. Hence, in this study, we analyzed the transgene expression profiles of CpG-free pDNA in vitro to determine the influence of CpG depletion from the transgene. We found that in contrast to the published in vivo studies, CpG-free pDNA expressed a significantly lower level of luciferase than CpG-rich pDNA in several human cell lines. By comparing novel CpG-free pDNA carrying CpG-free GFP (pZGFP: 0 CpG) to CpG-rich GFP (pRGFP: 60 CpGs), we further showed that the discrepancy was not influenced by external factors such as gene transfer agent, cell species, cell type, and cytotoxicity. Moreover, pZGFP exhibited reduced expression despite having equal gene dosage as pRGFP. Analysis of mRNA distribution revealed that the mRNA export of pZGFP and pRGFP was similar; however, the steady state mRNA level of pZGFP was significantly lower. Upon further investigation, we found that the CpG-free transgene in non-integrating CpG-free pDNA backbone acquired increased nucleosome enrichment as compared with CpG-rich transgene, which may explain the observed reduced level of steady state mRNA. Our findings suggest that nucleosome enrichment could regulate non-integrating CpG-free pDNA expression and has implications on pDNA design.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  6. Qi Y, Montague P, Loney C, Campbell C, Shafie INF, Anderson TJ, et al.
    Eur J Neurosci, 2019 12;50(12):3896-3905.
    PMID: 31336405 DOI: 10.1111/ejn.14526
    Canine degenerative myelopathy (DM) is a progressive neurological disorder that may be considered to be a large animal model for specific forms of the fatal human disease, familial amyotrophic lateral sclerosis (fALS). DM is associated with a c118G>A mutation of the superoxide dismutase 1 (Sod1) gene, and a significant proportion of cases are inherited in an autosomal recessive manner in contrast to the largely, but not exclusively, dominant mode of inheritance in fALS. The consensus view is that these Sod1/SOD1 mutations result in a toxic gain of function but the mechanisms remain unclear. Here we used an in vitro neuroblastoma cell line transfection system to monitor wild-type and mutant forms of SOD1 fusion proteins containing either a Cherry or an enhanced green fluorescent protein (EGFP) tag. These fusion proteins retained SOD1 enzymatic activity on a native gel assay system. We demonstrate that SOD1 aggregate density is significantly higher in DM transfectants compared to wild-type. In addition, we show by co-immunoprecipitation and confocal microscopy, evidence for a potential interaction between wild-type and mutant forms of SOD1 in co-transfected cells. While in vitro studies have shown SOD1 heterodimer formation in fALS models, this is the first report for DM SOD1. Therefore, despite for the majority of cases there is a difference in the mode of inheritance between fALS and DM, a similar interaction between wild-type and mutant SOD1 forms can occur. Clarifying the role of SOD1 in DM may also be of benefit to understanding the role of SOD1 in fALS.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  7. Li H, Yang C, Yusoff NM, Yahaya BH, Lin J
    Neuroscience, 2017 09 01;358:269-276.
    PMID: 28687312 DOI: 10.1016/j.neuroscience.2017.06.053
    Few researchers have investigated the direction of commissural axon projections on the contralateral side of the vertebrate embryonic spinal cord, especially for comparison between its different regions. In this study, pCAGGS-GFP plasmid expression was limited to different regions of the chicken embryonic spinal cord (cervical, anterior limb, anterior thorax, posterior thorax and posterior limb) at E3 using in ovo electroporation with modified electrodes and optimal electroporation conditions. Then open-book technique was performed at E6 to analyze the direction of axon projections in different spinal cord regions. The results show that in the five investigated regions, most axons projected rostrally after crossing the floor plate while a minority projected caudally. And there was a significant difference between the rostral and caudal projection quantities (P<0.01). The ratio of rostral and caudal projections was significantly different between the five investigated regions (P<0.05), except between the cervical region and the anterior limb (P>0.05). The projections were most likely to be rostral for the posterior limb followed by the posterior thorax, cervical region, anterior limb and anterior thorax. Our data for the direction of the commissural axon projections will be helpful in the future analyses of axon projection mechanisms and spinal cord-brain circuit formation.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  8. Rothan HA, Teoh TC
    Mol Biotechnol, 2021 Mar;63(3):240-248.
    PMID: 33464543 DOI: 10.1007/s12033-021-00299-7
    The global public health has been compromised since the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in late December 2019. There are no specific antiviral drugs available to combat SARS-CoV-2 infection. Besides the rapid dissemination of SARS-CoV-2, several variants have been identified with a potential epidemiologic and pathogenic variation. This fact has forced antiviral drug development strategies to stay innovative, including new drug discovery protocols, combining drugs, and establishing new drug classes. Thus, developing novel screening methods and direct-targeting viral enzymes could be an attractive strategy to combat SARS-CoV-2 infection. In this study, we designed, optimized, and validated a cell-based assay protocol for high-throughput screening (HTS) antiviral drug inhibitors against main viral protease (3CLpro). We applied the split-GFP complementation to develop GFP-split-3CLpro HTS system. The system consists of GFP-based reporters that become fluorescent upon cleavage by SARS-CoV-2 protease 3CLpro. We generated a stable GFP-split-3CLpro HTS system valid to screen large drug libraries for inhibitors to SARS-CoV-2 main protease in the bio-safety level 2 laboratory, providing real-time antiviral activity of the tested compounds. Using this assay, we identified a new class of viral protease inhibitors derived from quinazoline compounds that worth further in vitro and in vivo validation.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  9. Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH
    Int J Mol Sci, 2014;15(9):15044-60.
    PMID: 25162825 DOI: 10.3390/ijms150915044
    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  10. Rosli R, Nograles N, Hanafi A, Nor Shamsudin M, Abdullah S
    Hum Vaccin Immunother, 2013 Oct;9(10):2222-7.
    PMID: 24051430 DOI: 10.4161/hv.25325
    Polymeric carriers in the form of cellulose acetate phthalate (CAP) and alginate (ALG) microspheres were used for encapsulation of plasmid DNA for oral mucosal immunization. Access into the intestinal mucosa by pVAX1 eukaryotic expression plasmid vectors carrying gene-coding sequences, either for the cholera enterotoxin B subunit (ctxB) immunostimulatory antigen or the green fluorescent protein (GFP), delivered from both types of microsphere carriers were examined in orally immunized BALB/c mice. Demonstration of transgene protein expression and IgA antibody responses at local mucosal sites suggest immunological response to a potential oral DNA vaccine formulated within the microsphere carriers.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  11. Ngai SC, Rosli R, Nordin N, Veerakumarasivam A, Abdullah S
    Gene, 2012 May 1;498(2):231-6.
    PMID: 22366305 DOI: 10.1016/j.gene.2012.01.071
    Lentivirus (LV) encoding woodchuck posttranscriptional regulatory element (WPRE) and central polypurine tract (cPPT) driven by CMV promoter have been proven to act synergistically to increase both transduction efficiency and gene expression. However, the inclusion of WPRE and cPPT in a lentiviral construct may pose safety risks when administered to human. A simple lentiviral construct driven by an alternative promoter with proven extended duration of gene expression without the two regulatory elements would be free from the risks. In a non-viral gene delivery context, gene expression driven by human polybiquitin C (UbC) promoter resulted in higher and more persistent expression in mouse as compared to cytomegalovirus (CMV) promoter. In this study, we measured the efficiency and persistency of green fluorescent protein (GFP) reporter gene expression in cells transduced with LV driven by UbC (LV/UbC/GFP) devoid of the WPRE and cPPT in comparison to the established LV construct encoding WPRE and cPPT, driven by CMV promoter (LV/CMV/GFP). However, we found that LV/UbC/GFP was inferior to LV/CMV/GFP in many aspects: (i) the titer of virus produced; (ii) the levels of reporter gene expression when MOI value was standardized; and (iii) the transduction efficiency in different cell types. The duration of reporter gene expression in selected cell lines was also determined. While the GFP expression in cells transduced with LV/CMV/GFP persisted throughout the experimental period of 14 days, expression in cells transduced with LV/UbC/GFP declined by day 2 post-transduction. In summary, the LV driven by the UbC promoter without the WPRE and cPPT does not exhibit enhanced or durable transgene expression.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  12. Baradaran A, Sieo CC, Foo HL, Illias RM, Yusoff K, Rahim RA
    Biotechnol Lett, 2013 Feb;35(2):233-8.
    PMID: 23076361 DOI: 10.1007/s10529-012-1059-4
    Fifty signal peptides of Pediococcus pentosaceus were characterized by in silico analysis and, based on the physicochemical analysis, (two potential signal peptides Spk1 and Spk3 were identified). The coding sequences of SP were amplified and fused to the gene coding for green fluorescent protein (GFP) and cloned into Lactococcus lactis pNZ8048 and pMG36e vectors, respectively. Western blot analysis indicated that the GFP proteins were secreted using both heterologous SPs. ELISA showed that the secretion efficiency of GFP using Spk1 (0.64 μg/ml) was similar to using Usp45 (0.62 μg/ml) and Spk3 (0.58 μg/ml).
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  13. Cha TS, Yee W, Aziz A
    World J Microbiol Biotechnol, 2012 Apr;28(4):1771-9.
    PMID: 22805959 DOI: 10.1007/s11274-011-0991-0
    The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  14. Molouki A, Hsu YT, Jahanshiri F, Abdullah S, Rosli R, Yusoff K
    Virol J, 2011;8:385.
    PMID: 21810274 DOI: 10.1186/1743-422X-8-385
    The underlying mechanisms by which Newcastle disease virus (NDV) kills cancer cells are still unclear. Recent discoveries have shown that many viruses contain Bcl-2 homology-like domains which enabled their interaction with Bcl-2 family members, and thereby accounting for their virulence and pathogenicity. Alignment of the protein sequences of Malaysian strain of NDV, known as AF2240, with those from members of the human Bcl-2 family showed many similar regions; most notably we found that its matrix (AF2240-M) protein, large (AF2240-L) protein and fusion (AF2240-F) protein all contain BH3-like regions. In addition, there are BH1-like domains in these proteins, where AF2240-F and Mcl-1 share 55% identity within this region. To further investigate our hypothesis that the presence of the BH3-like domains in these proteins may convey cytotoxicity, AF2240-M and AF2240-F genes were cloned into pFLAG and pEGFP.N2 vectors and transfected into HeLa cells. The expression of these constructs promoted cell death. As shown by flow cytometry, AF2240-M protein with deleted BH3-like region showed five-fold decrease in apoptosis. Moreover, the construct containing the N-terminal of AF2240-M showed nearly the same cell death rate as to that of the full-length protein, strongly suggesting that the BH3-like domain within this protein participates in promoting cell death. Moreover, AF2240-M transfection promoted Bax redistribution to mitochondria. Therefore, to determine whether there is any direct interaction between NDV viral proteins with some members of the Bcl-2 family, various constructs were co-transfected into HeLa cells. Co-immunoprecipitation trials showed that the AF2240-M indeed directly interacted with Bax protein via its BH3-domain, as the mutant proteins failed to interact with Bax. AF2240-F failed to interact with any of the tested proteins, although Bcl-XL slowed down the rate of cell death caused by this construct by nearly five-fold. In a parallel experiment, the level of expression of endogenous Bax and Bcl-2 after infection of HeLa cells with NDV was assessed by qRT-PCR, but no statistically significant change was observed. Consequently, the Bax/Bcl-2 ratio at the mRNA level did not alter. Overall, our study has shed additional light into the mechanisms by which NDV induces apoptosis.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  15. Noreen N, Hooi WY, Baradaran A, Rosfarizan M, Sieo CC, Rosli MI, et al.
    Microb Cell Fact, 2011;10:28.
    PMID: 21518457 DOI: 10.1186/1475-2859-10-28
    Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  16. Nograles N, Abdullah S, Shamsudin MN, Billa N, Rosli R
    J Biosci Bioeng, 2012 Feb;113(2):133-40.
    PMID: 22093752 DOI: 10.1016/j.jbiosc.2011.10.003
    Alginate, a natural polysaccharide, was explored in this study as an oral delivery vehicle of a mammalian expression vector into the murine intestinal mucosa. Alginate microspheres were produced through water-in-oil (W/O) emulsification method. Average diameter sizes of microspheres were 46.88 μm±3.07 μm with significant size reduction upon utilization of 1.0% Span80. Plasmid DNA (pDNA) carrying green fluorescent protein reporter gene (GFP), pVAX-GFP, was encapsulated within microspheres at efficiencies of 72.9 to 74.4%, carrying maximum load of 6 μg pDNA. Alginate microspheres demonstrated shrinkage in pH 1.2 and swelling in pH 9.0 with pDNA release about twice the amount released in acidic environment. Oral delivery of pVAX-GFP loaded-microspheres, at 50 μg, 100 μg and 150 μg dose, was performed on BALB/c mice. Tissue biodistribution, investigated through flow cytometric analysis, demonstrated GFP positive intestinal cells (<1.0%) with 1.3-fold higher levels for the 100 μg dose; therefore suggesting feasibility of the approach for oral gene delivery and vaccination.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  17. Kumarasingha R, Palombo EA, Bhave M, Yeo TC, Lim DS, Tu CL, et al.
    Int J Parasitol, 2014 Apr;44(5):291-8.
    PMID: 24583111 DOI: 10.1016/j.ijpara.2014.01.008
    Traditional healers in Sarawak, Malaysia, use plants such as Picria fel-terrae, Linariantha bicolor and Lansium domesticum to treat gastrointestinal infections. This study aimed to test whether their nematocidal activities could be confirmed in vitro using highly standardised Caenorhabditis elegans models. We applied eight different ethanol solubilised plant extracts and two commercial anthelmintic drugs to larval and adult stages of C. elegans in vitro. Seven C. elegans strains were evaluated, one wild type and six strains with GFP-tagged stress response pathways to help characterise and compare the pathways affected by plant extracts. Our in vitro screen confirmed that both of the commercial anthelmintic drugs and five of the eight traditionally used plant extracts had significant nematocidal activity against both larval and adult C. elegans. The most effective extracts were from P. fel-terrae. The plant extracts triggered different stress response pathways from the commercial anthelmintic drugs. This study showed that using traditional knowledge of plant medicinal properties in combination with a C. elegans in vitro screen provided a rapid and economical test with a high hit rate compared with the random screening of plants for nematocidal activities. The use of transgenic C. elegans strains may allow this approach to be refined further to investigate the mode of action of active extracts.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  18. Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AA, Rahim RA
    Plasmid, 2014 May;73:26-33.
    PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003
    Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  19. Teow SY, Liew K, Che Mat MF, Marzuki M, Abdul Aziz N, Chu TL, et al.
    BMC Biotechnol, 2019 06 14;19(1):34.
    PMID: 31200673 DOI: 10.1186/s12896-019-0528-4
    BACKGROUND: In vitro modelling of cancer cells is becoming more complex due to prevailing evidence of intimate interactions between cancer cells and their surrounding stroma. A co-culture system which consists of more than one cell type is physiologically more relevant and thus, could serve as a useful model for various biological studies. An assay that specifically detects the phenotypic changes of cancer cells in a multi-cellular system is lacking for nasopharyngeal carcinoma (NPC).

    RESULTS: Here, we describe a luciferase/luciferin (XenoLuc) assay that could specifically measure changes in the proliferation of cancer cells in the co-culture system using two modified NPC patient-derived tumour xenograft (PDTXs) cells: Xeno284-gfp-luc2 and XenoB110-gfp-luc2. Through this assay, we are able to show that the growth of NPC xenograft cells in both two-dimensional (2D) and three-dimensional (3D) models was enhanced when co-cultured with normal human dermal fibroblasts (NHDFs). In addition, potential applications of this assay in in vitro drug or inhibitor screening experiments are also illustrated.

    CONCLUSIONS: XenoLuc assay is specific, sensitive, rapid and cost-effective for measuring the growth of luciferase-expressing cells in a co- or multiple-culture system. This assay may also be adapted for tumour microenvironment studies as well as drug screening experiments in more complex 3D co-culture systems.

    Matched MeSH terms: Green Fluorescent Proteins/genetics
  20. Seah TC, Tay YL, Tan HK, Muhammad TS, Wahab HA, Tan ML
    Int J Toxicol, 2015 08 12;34(5):454-68.
    PMID: 26268769 DOI: 10.1177/1091581815599335
    A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links