Affiliations 

  • 1 Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health (NIH Complex), Ministry of Health Malaysia, Level 4, Block C7, No: 1, Jalan Setia Murni U13/52, Section U13, Setia Alam, 40170 Shah Alam, 50588, Kuala Lumpur, Selangor, Malaysia
  • 2 Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health (NIH Complex), Ministry of Health Malaysia, Level 4, Block C7, No: 1, Jalan Setia Murni U13/52, Section U13, Setia Alam, 40170 Shah Alam, 50588, Kuala Lumpur, Selangor, Malaysia. alankhoo@imr.gov.my
BMC Biotechnol, 2019 06 14;19(1):34.
PMID: 31200673 DOI: 10.1186/s12896-019-0528-4

Abstract

BACKGROUND: In vitro modelling of cancer cells is becoming more complex due to prevailing evidence of intimate interactions between cancer cells and their surrounding stroma. A co-culture system which consists of more than one cell type is physiologically more relevant and thus, could serve as a useful model for various biological studies. An assay that specifically detects the phenotypic changes of cancer cells in a multi-cellular system is lacking for nasopharyngeal carcinoma (NPC).

RESULTS: Here, we describe a luciferase/luciferin (XenoLuc) assay that could specifically measure changes in the proliferation of cancer cells in the co-culture system using two modified NPC patient-derived tumour xenograft (PDTXs) cells: Xeno284-gfp-luc2 and XenoB110-gfp-luc2. Through this assay, we are able to show that the growth of NPC xenograft cells in both two-dimensional (2D) and three-dimensional (3D) models was enhanced when co-cultured with normal human dermal fibroblasts (NHDFs). In addition, potential applications of this assay in in vitro drug or inhibitor screening experiments are also illustrated.

CONCLUSIONS: XenoLuc assay is specific, sensitive, rapid and cost-effective for measuring the growth of luciferase-expressing cells in a co- or multiple-culture system. This assay may also be adapted for tumour microenvironment studies as well as drug screening experiments in more complex 3D co-culture systems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.