Displaying all 19 publications

Abstract:
Sort:
  1. Chin SP, Saffery NS, Then KY, Cheong SK
    In Vitro Cell Dev Biol Anim, 2024 Mar;60(3):307-319.
    PMID: 38421574 DOI: 10.1007/s11626-024-00852-z
    Human umbilical cord-mesenchymal stem cells (hUC-MSCs) have been widely investigated as a new therapeutic agent to treat injuries and inflammatory-mediated and autoimmune diseases. Previous studies have reported on the safety of low-dose infusion of hUC-MSCs, but information on the cell behaviour at higher doses and frequency of injection of the cells remains uncertain. The aim of the present study was to demonstrate the safety and efficacy of hUC-MSCs by Cytopeutics® (Selangor, Malaysia) from low to an extremely high dose in different monitoring periods in healthy BALB/c mice as well as assessing the tumorigenicity of the cells in B-NDG SCID immunocompromised mice. Umbilical cord from two healthy human newborns was obtained and the isolation of the hUC-MSCs was performed based on previous established method. Assessment of the cells at different doses of single or multiple administrations was performed on healthy BALB/c mice in dose range finding, sub-acute (7 d and 28 d) and sub-chronic periods (90 d). Tumorigenicity potential of Cytopeutics® hUC-MSCs was also evaluated on B-NDG immunocompromised mice for 26 wk. Single or multiple administrations of Cytopeutics® hUC-MSCs up to 40 × 106 cells per kilogramme of body weight (kg BW) were found to have no adverse effect in terms of clinical symptoms, haematology and other laboratory parameters, and histology examination in healthy BALB/c mice. hUC-MSCs were also found to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in a dose-dependent manner. No sign of tumor formation was observed in B-NDG mice in the 26-wk tumorigenicity assessment. Single or multiple administration of allogenic Cytopeutics® hUC-MSCs was safe even at very high doses, is non-tumorigenic and did not cause adverse effects in mice throughout the evaluation periods. In addition, Cytopeutics® hUC-MSCs exhibited immunomodulatory effect in a dose-dependent manner.
    Matched MeSH terms: Mice, SCID
  2. Awang-Junaidi AH, Singh J, Honaramooz A
    Reprod Fertil Dev, 2020 Mar;32(6):594-609.
    PMID: 32051087 DOI: 10.1071/RD19043
    Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique invivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive invivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100×106 cells were larger than those with 50×106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.
    Matched MeSH terms: Mice, SCID
  3. Arseculeratne SN, Hussein FN, Atapattu DN, Pathmanathan R
    Med Mycol, 2000 Oct;38(5):393-5.
    PMID: 11092388
    Congenitally T and B cell-deficient SCID mice and T cell-deficient NUDE mice, with BALB/c mice as immunologically normal controls, were inoculated with Rhinosporidium seeberi. At 3 and 16 weeks after inoculation, no evidence of rhinosporidiosis was detected. The reasons for the failure to establish rhinosporidiosis in immunodeficient or normal mice remain obscure.
    Matched MeSH terms: Mice, SCID
  4. Rahman R, Fonseka AD, Sua SC, Ahmad M, Rajendran R, Ambu S, et al.
    J Cell Mol Med, 2021 08;25(15):7181-7189.
    PMID: 34236134 DOI: 10.1111/jcmm.16748
    Breast cancer has a diverse aetiology characterized by the heterogeneous expression of hormone receptors and signalling molecules, resulting in varied sensitivity to chemotherapy. The adverse side effects of chemotherapy coupled with the development of drug resistance have prompted the exploration of natural products to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its inhibitory effects on cell lines representing different categories of breast cancer and in vivo for its suppressive effects on tumour xenografts in NOD-SCID mice. The different breast cancer cell lines exhibited varied levels of sensitivity to apoptosis induced by LfcinB in the order of SKBR3>MDA-MB-231>MDA-MB-468>MCF7, while the normal breast epithelial cells MCF-10A were not sensitive to LfcinB. The peptide also inhibited the invasion of the MDA-MB-231 and MDA-MB-468 cell lines. In the mouse xenograft model, intratumoural injections of LfcinB significantly reduced tumour growth rate and tumour size, as depicted by live imaging of the mice using in vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that can be considered for the treatment of breast cancer.
    Matched MeSH terms: Mice, SCID
  5. Hashim YZ, Worthington J, Allsopp P, Ternan NG, Brown EM, McCann MJ, et al.
    Food Funct, 2014 Jul 25;5(7):1513-9.
    PMID: 24836598 DOI: 10.1039/c4fo00090k
    The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 μg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and β integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.
    Matched MeSH terms: Mice, SCID
  6. Teow SY, Liew K, Che Mat MF, Marzuki M, Abdul Aziz N, Chu TL, et al.
    BMC Biotechnol, 2019 06 14;19(1):34.
    PMID: 31200673 DOI: 10.1186/s12896-019-0528-4
    BACKGROUND: In vitro modelling of cancer cells is becoming more complex due to prevailing evidence of intimate interactions between cancer cells and their surrounding stroma. A co-culture system which consists of more than one cell type is physiologically more relevant and thus, could serve as a useful model for various biological studies. An assay that specifically detects the phenotypic changes of cancer cells in a multi-cellular system is lacking for nasopharyngeal carcinoma (NPC).

    RESULTS: Here, we describe a luciferase/luciferin (XenoLuc) assay that could specifically measure changes in the proliferation of cancer cells in the co-culture system using two modified NPC patient-derived tumour xenograft (PDTXs) cells: Xeno284-gfp-luc2 and XenoB110-gfp-luc2. Through this assay, we are able to show that the growth of NPC xenograft cells in both two-dimensional (2D) and three-dimensional (3D) models was enhanced when co-cultured with normal human dermal fibroblasts (NHDFs). In addition, potential applications of this assay in in vitro drug or inhibitor screening experiments are also illustrated.

    CONCLUSIONS: XenoLuc assay is specific, sensitive, rapid and cost-effective for measuring the growth of luciferase-expressing cells in a co- or multiple-culture system. This assay may also be adapted for tumour microenvironment studies as well as drug screening experiments in more complex 3D co-culture systems.

    Matched MeSH terms: Mice, SCID
  7. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Mice, SCID
  8. Chen KS, Bridges CR, Lynton Z, Lim JWC, Stringer BW, Rajagopal R, et al.
    J Neurooncol, 2020 Jan;146(1):41-53.
    PMID: 31760595 DOI: 10.1007/s11060-019-03352-3
    INTRODUCTION: Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma.

    METHODS: We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation.

    RESULTS: The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts.

    CONCLUSION: Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.

    Matched MeSH terms: Mice, SCID
  9. Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, Syafruddin SE, et al.
    Cancer Discov, 2018 Jul;8(7):850-865.
    PMID: 29875134 DOI: 10.1158/2159-8290.CD-17-1211
    Metastases, the spread of cancer cells to distant organs, cause the majority of cancer-related deaths. Few metastasis-specific driver mutations have been identified, suggesting aberrant gene regulation as a source of metastatic traits. However, how metastatic gene expression programs arise is poorly understood. Here, using human-derived metastasis models of renal cancer, we identify transcriptional enhancers that promote metastatic carcinoma progression. Specific enhancers and enhancer clusters are activated in metastatic cancer cell populations, and the associated gene expression patterns are predictive of poor patient outcome in clinical samples. We find that the renal cancer metastasis-associated enhancer complement consists of multiple coactivated tissue-specific enhancer modules. Specifically, we identify and functionally characterize a coregulatory enhancer cluster, activated by the renal cancer driver HIF2A and an NF-κB-driven lymphoid element, as a mediator of metastasis in vivo We conclude that oncogenic pathways can acquire metastatic phenotypes through cross-lineage co-option of physiologic epigenetic enhancer states.Significance: Renal cancer is associated with significant mortality due to metastasis. We show that in metastatic renal cancer, functionally important metastasis genes are activated via co-option of gene regulatory enhancer modules from distant developmental lineages, thus providing clues to the origins of metastatic cancer. Cancer Discov; 8(7); 850-65. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
    Matched MeSH terms: Mice, SCID
  10. Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, et al.
    Stem Cell Res Ther, 2018 03 20;9(1):68.
    PMID: 29559008 DOI: 10.1186/s13287-018-0796-2
    BACKGROUND: While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming.

    METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days).

    RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation.

    CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.

    Matched MeSH terms: Mice, SCID
  11. Marin-Mogollon C, Salman AM, Koolen KMJ, Bolscher JM, van Pul FJA, Miyazaki S, et al.
    PMID: 31058097 DOI: 10.3389/fcimb.2019.00096
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line mCherry-luc@etramp10.3). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The mCherry-luc@etramp10.3 parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology.
    Matched MeSH terms: Mice, SCID
  12. Hoe SLL, Tan LP, Abdul Aziz N, Liew K, Teow SY, Abdul Razak FR, et al.
    Sci Rep, 2017 09 28;7(1):12372.
    PMID: 28959019 DOI: 10.1038/s41598-017-12045-8
    Subpopulations of nasopharyngeal carcinoma (NPC) contain cells with differential tumourigenic properties. Our study evaluates the tumourigenic potential of CD24, CD44, EpCAM and combination of EpCAM/CD44 cells in NPC. CD44br and EpCAMbr cells enriched for higher S-phase cell content, faster-growing tumourigenic cells leading to tumours with larger volume and higher mitotic figures. Although CD44br and EpCAMbr cells significantly enriched for tumour-initiating cells (TICs), all cells could retain self-renewal property for at least four generations. Compared to CD44 marker alone, EpCAM/CD44dbr marker did not enhance for cells with faster-growing ability or higher TIC frequency. Cells expressing high CD44 or EpCAM had lower KLF4 and p21 in NPC subpopulations. KLF4-overexpressed EpCAMbr cells had slower growth while Kenpaullone inhibition of KLF4 transcription increased in vitro cell proliferation. Compared to non-NPC, NPC specimens had increased expression of EPCAM, of which tumours from advanced stage of NPC had higher expression. Together, our study provides evidence that EpCAM is a potentially important marker in NPC.
    Matched MeSH terms: Mice, SCID
  13. Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT, et al.
    Oncotarget, 2014 Oct 30;5(20):9626-40.
    PMID: 25275299
    Oral squamous cell carcinoma (OSCC) has a propensity to spread to the cervical lymph nodes (LN). The presence of cervical LN metastases severely impacts patient survival, whereby the two-year survival for oral cancer patients with involved LN is ~30% compared to over 80% in patients with non-involved LN. Elucidation of key molecular mechanisms underlying OSCC metastasis may afford an opportunity to target specific genes, to prevent the spread of OSCC and to improve patient survival. In this study, we demonstrated that expression of the heterotrimeric G-protein alpha-12 (Gα12) is highly up-regulated in primary tumors and LN of OSCC patients, as assessed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). We also found that exogenous expression of the constitutively activated-form of Gα12 promoted cell migration and invasion in OSCC cell lines. Correspondingly, inhibition of Gα12 expression by shRNA consistently inhibited OSCC cell migration and invasion in vitro. Further, the inhibition of G12 signaling by regulator of G-protein signaling (RGS) inhibited Gα12-mediated RhoA activation, which in turn resulted in reduced LN metastases in a tongue-orthotopic xenograft mouse model of oral cancer. This study provides a rationale for future development and evaluation of drug candidates targeting Gα12-related pathways for metastasis prevention.
    Matched MeSH terms: Mice, SCID
  14. Nakagawa-Goto K, Chen JY, Cheng YT, Lee WL, Takeya M, Saito Y, et al.
    Mol Oncol, 2016 06;10(6):921-37.
    PMID: 27055598 DOI: 10.1016/j.molonc.2016.03.002
    Triple-negative breast cancer (TNBC) is associated with high grade, metastatic phenotype, younger patient age, and poor prognosis. The discovery of an effective anti-TNBC agent has been a challenge in oncology. In this study, fifty-eight ester derivatives (DETDs) with a novel sesquiterpene dilactone skeleton were organically synthesized from a bioactive natural product deoxyelephantopin (DET). Among them, DETD-35 showed potent antiproliferative activities against a panel of breast cancer cell lines including TNBC cell line MDA-MB-231, without inhibiting normal mammary cells M10. DETD-35 exhibited a better effect than parental DET on inhibiting migration, invasion, and motility of MDA-MB-231 cells in a concentration-dependent manner. Comparative study of DETD-35, DET and chemotherapeutic drug paclitaxel (PTX) showed that PTX mainly caused a typical time-dependent G2/M cell-cycle arrest, while DETD-35 or DET treatment induced cell apoptosis. In vivo efficacy of DETD-35 was evaluated using a lung metastatic MDA-MB-231 xenograft mouse model. DETD-35 significantly suppressed metastatic pulmonary foci information along with the expression level of VEGF and COX-2 in SCID mice. DETD-35 also showed a synergistic antitumor effect with PTX in vitro and in vivo. This study suggests that the novel compound DETD-35 may have a potential to be further developed into a therapeutic or adjuvant agent for chemotherapy against metastatic TNBC.
    Matched MeSH terms: Mice, SCID
  15. Fadlullah MZ, Chiang IK, Dionne KR, Yee PS, Gan CP, Sam KK, et al.
    Oncotarget, 2016 May 10;7(19):27802-18.
    PMID: 27050151 DOI: 10.18632/oncotarget.8533
    Emerging biological and translational insights from large sequencing efforts underscore the need for genetically-relevant cell lines to study the relationships between genomic alterations of tumors, and therapeutic dependencies. Here, we report a detailed characterization of a novel panel of clinically annotated oral squamous cell carcinoma (OSCC) cell lines, derived from patients with diverse ethnicity and risk habits. Molecular analysis by RNAseq and copy number alterations (CNA) identified that the cell lines harbour CNA that have been previously reported in OSCC, for example focal amplications in 3q, 7p, 8q, 11q, 20q and deletions in 3p, 5q, 8p, 18q. Similarly, our analysis identified the same cohort of frequently mutated genes previously reported in OSCC including TP53, CDKN2A, EPHA2, FAT1, NOTCH1, CASP8 and PIK3CA. Notably, we identified mutations (MLL4, USP9X, ARID2) in cell lines derived from betel quid users that may be associated with this specific risk factor. Gene expression profiles of the ORL lines also aligned with those reported for OSCC. By focusing on those gene expression signatures that are predictive of chemotherapeutic response, we observed that the ORL lines broadly clustered into three groups (cell cycle, xenobiotic metabolism, others). The ORL lines noted to be enriched in cell cycle genes responded preferentially to the CDK1 inhibitor RO3306, by MTT cell viability assay. Overall, our in-depth characterization of clinically annotated ORL lines provides new insight into the molecular alterations synonymous with OSCC, which can facilitate in the identification of biomarkers that can be used to guide diagnosis, prognosis, and treatment of OSCC.
    Matched MeSH terms: Mice, SCID
  16. Matsubayashi M, Teramoto-Kimata I, Uni S, Lillehoj HS, Matsuda H, Furuya M, et al.
    J Biol Chem, 2013 Nov 22;288(47):34111-34120.
    PMID: 24085304 DOI: 10.1074/jbc.M113.515544
    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis.
    Matched MeSH terms: Mice, SCID
  17. Yee PS, Zainal NS, Gan CP, Lee BKB, Mun KS, Abraham MT, et al.
    Target Oncol, 2019 04;14(2):223-235.
    PMID: 30806895 DOI: 10.1007/s11523-019-00626-8
    BACKGROUND: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits.

    OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.

    METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.

    RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.

    CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.

    Matched MeSH terms: Mice, SCID
  18. Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al.
    Nat Commun, 2019 03 11;10(1):1152.
    PMID: 30858363 DOI: 10.1038/s41467-019-09116-x
    Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
    Matched MeSH terms: Mice, SCID
  19. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Mice, SCID
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links