Displaying all 12 publications

Abstract:
Sort:
  1. Faridah MN, Shahrom AW
    Malays J Pathol, 2001 Dec;23(2):111-4.
    PMID: 12166591
    This paper describes a modified method of quantitative determination of histamine in human skin wounds using fluorescence spectrophotometer. In this study, histamine was used as an indicator to differentiate antemortem from postmortem wounds. Skin samples were obtained from 20 corpses which were brought to Hospital Kuala Lumpur and Universiti Kebangsaan Malaysia for medicolegal autopsy. Sections of human skin were processed biochemically for histamine determination using fluorescence spectrophotometer. Results revealed no significant difference in the histamine content of the antemortem wounds in comparison to postmortem wounds. Based on these results, detection of histamine is not suitable to differentiate antemortem from postmortem wounds.
    Matched MeSH terms: Histamine/metabolism*
  2. Ridzwan BH, Jais AM, Waton NG
    Gen. Pharmacol., 1988;19(4):631-6.
    PMID: 3410287
    1. 30 mg kg-1 chlorpromazine (CPZ) depleted more than half of the tissue histamine from lungs, stomach, ileum and skin of the normal guinea-pigs. However, the drug increased the tissue histamine content in scorbutic animals. 2. In contrast, reserpine depleted histamine from the four tested tissues in both normal and scorbutic animals, except those in the lungs of the control animals. 3. Ascorbic acid only depleted histamine from the stomach and ileum. 4. A 24 hr period was the time limit for CPZ to deplete the histamine in all the four tested tissues. 5. Histamine partially or completely recovered in the tissues after the next 24 hr.
    Matched MeSH terms: Histamine/metabolism*
  3. Ridzwan BH, Waton NG, Rozali BO, Jais AM, Maimun AH
    PMID: 1982866
    1. In vitro studies of non-specific histidine decarboxylase activity was low or absent in control guinea-pigs and unchanged 9 or 27 hr after chlorpromazine (CPZ) injection intraperitoneally. 2. However, specific histidine decarboxylase activity was found in the control tissues and was increased 9 hr but not 27 hr after CPZ injection.
    Matched MeSH terms: Histamine/metabolism
  4. Hussein-Al-Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Mol Sci, 2012;13(5):5899-916.
    PMID: 22754339 DOI: 10.3390/ijms13055899
    The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs) and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR) study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.
    Matched MeSH terms: Histamine/metabolism*
  5. Zaman MZ, Abu Bakar F, Jinap S, Bakar J
    Int J Food Microbiol, 2011 Jan 31;145(1):84-91.
    PMID: 21183239 DOI: 10.1016/j.ijfoodmicro.2010.11.031
    Bacteria with amine oxidase activity have become a particular interest to reduce biogenic amines concentration in food products such as meat and fish sausages. However, little information is available regarding the application of these bacteria in fish sauce. Hence, our study was aimed to investigate the effect of such starter cultures in reducing biogenic amines accumulation during fish sauce fermentation. Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05 isolated from fish sauce which possess amine oxidase activity were used as starter cultures in this study. Fermentation was held for 120 days at 35 °C. The pH value increased in all samples, while salt concentration remained constant throughout fermentation. Aerobic bacteria count was significantly lower (p < 0.05) in the control than in inoculated samples as a result of starter cultures addition. However, it decreased during fermentation due to the growth inhibition by high salt concentration. Proteolytic bacterial count decreased during fermentation with no significant difference (p > 0.05) among samples. These bacteria hydrolyzed protein in anchovy to produce free amino acid precursors for amines formation by decarboxylase bacteria. The presence of biogenic amines producing bacteria in this study was considered to be indigenous from raw material or contamination during fermentation, since our cultures were negative histamine producers. Amino acid histidine, arginine, lysine and tyrosine concentration decreased at different rates during fermentation as they were converted into their respective amines. In general, biogenic amines concentration namely histamine, putrescine, cadaverine and tyramine increased throughout fermentation. However, their concentrations were markedly higher (p < 0.05) in the control (without starter cultures) as compared to the samples treated with starter cultures. Histamine concentration was reduced by 27.7% and 15.4% by Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively. Both cultures could also reduce other amines during fermentation. After 120 days of fermentation, the overall biogenic amines concentration was 15.9% and 12.5% less in samples inoculated with Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively, as compared to control samples. These findings emphasized that application of starter cultures with amines oxidase activity in fish sauce fermentation was found to be effective in reducing biogenic amines accumulation.
    Matched MeSH terms: Histamine/metabolism
  6. Yong YK, Chiong HS, Somchit MN, Ahmad Z
    PMID: 26468073 DOI: 10.1186/s12906-015-0901-3
    Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
    Matched MeSH terms: Histamine/metabolism
  7. Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EEM, Hussein-Al-Ali S, Alhassan FH, et al.
    Eur J Pharm Sci, 2019 May 15;133:167-182.
    PMID: 30902654 DOI: 10.1016/j.ejps.2019.03.015
    Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-β-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-β-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 μg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.
    Matched MeSH terms: Histamine/metabolism
  8. Kow ASF, Khoo LW, Tan JW, Abas F, Lee MT, Israf DA, et al.
    J Ethnopharmacol, 2023 Mar 01;303:116003.
    PMID: 36464074 DOI: 10.1016/j.jep.2022.116003
    ETHNOPHARMACOLOGICAL RELEVANCE: Allergy is mediated by the crosslinking of immunoglobulins (Ig) -E or -G to their respective receptors, which degranulates mast cells, macrophages, basophils, or neutrophils, releasing allergy-causing mediators. The removal of these mediators such as histamine, platelet-activating factor (PAF) and interleukins (ILs) released by effector cells will alleviate allergy. Clinacanthus nutans (C. nutans), an herbal plant in Southeast Asia, is used traditionally to treat skin rash, an allergic symptom. Previously, we have reported that C. nutans aqueous leaves extract (CNAE) was able to suppress the release of β-hexosaminidase and histamine but not interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in the IgE-induced mast cell degranulation model at 5 mg/mL and above. We also found that CNAE could protect rats against ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) through the downregulation and upregulation of certain metabolites using proton nuclear magnetic resonance (1H-NMR) metabolomics approach.

    AIM OF THE STUDY: As allergy could be mediated by both IgE and IgG, we further evaluated the anti-allergy potential of CNAE in both in vitro model of IgG-induced macrophage activation and in vivo anaphylaxis models to further dissect the mechanism of action underlying the anti-allergic properties of CNAE.

    MATERIAL & METHODS: The anti-allergy potential of CNAE was evaluated in in vivo anaphylaxis models of ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) and IgE-challenged passive systemic anaphylaxis (PSA) using Sprague Dawley rats as well as IgG-challenged passive systemic anaphylaxis (IgG-PSA) using C57BL/6 mice. Meanwhile, in vitro model of IgG-induced macrophage activation model was performed using IC-21 macrophages. The release of soluble mediators from both IgE and IgG-mediated pathways were measured using enzyme-linked immunosorbent assay (ELISA). The signaling molecules targeted by CNAE were identified by performing Western blot.

    RESULTS: IgG, platelet-activating factor (PAF) and IL-6 was suppressed by CNAE in OVA-ASA, but not IgE. In addition, CNAE significantly suppressed PAF and IL-6 in IgG-PSA but did not suppress histamine, IL-4 and leukotrienes C4 (LTC4) in IgE-PSA. CNAE also inhibited IL-6 and TNF-α by inhibiting the phosphorylation of ERK1/2 in the IgG-induced macrophage activation model.

    CONCLUSION: Overall, our findings supported that CNAE exerts its anti-allergic properties by suppressing the IgG pathway and its mediators by inhibiting ERK1/2 phosphorylation, thus providing scientific evidence supporting its traditional use in managing allergy.

    Matched MeSH terms: Histamine/metabolism
  9. Vijayapandi P, Annabathina V, SivaNagaSrikanth B, Manjunath V, Boggavarapu P, Mohammed P AK, et al.
    PMID: 24082330
    The present investigation was aimed at determining the effects of hexane, acetone, methanol and aqueous extracts of Acorus calamus leaves (ACHE, ACAE, ACME and ACAQE) on cholinergic and histaminic system using isolated frog rectus abdominis muscle and guinea pig ileum. A dose dependent potentiation of Ach response (anticholinesterase like effect) was found with ACAE and ACME at 0.25, 0.5, 0.75 and 1 mg/ml, but at higher dose of ACAE, ACME, ACAQE and ACHE (5, 20 mg/ml) inhibit the Ach response (antinicotinic effect). These results revealed biphasic effect of Acorus calamus leaves extracts on acetylcholine induced contractile response in isolated frog rectus abdominis muscle preparation (i.e. potentiation effect at lower dose and inhibitory effect at higher dose). Studies on isolated guinea pig ileum demonstrated antihistaminic effect in a dose dependent manner (100-1000 µg/ml) with ACAE, ACME and ACAQE. In addition, the dose dependent inhibition of Ach response (antimuscarinic effect) was observed with ACAE and ACME. In conclusion, Acorus calamus leaves extracts exerts antinicotinic, anticholinesterase like activities in isolated frog rectus abdominis muscle and antihistaminic, antimuscarinic effect in guinea pig ileum. It has been suggested that these observed activities can be further studied for therapeutic potential of Acorus calamus leaves in the treatment of cognitive disorders and asthma.
    Matched MeSH terms: Histamine/metabolism
  10. Razali NA, Nazarudin NA, Lai KS, Abas F, Ahmad S
    BMC Complement Altern Med, 2018 Jul 16;18(1):217.
    PMID: 30012134 DOI: 10.1186/s12906-018-2223-8
    BACKGROUND: Histamine is a well-known mediator involved in skin allergic responses through up-regulation of pro-inflammatory cytokines. Antihistamines remain the mainstay of allergy treatment, but they were found limited in efficacy and associated with several common side effects. Therefore, alternative therapeutic preferences are derived from natural products in an effort to provide safe yet reliable anti-inflammatory agents. Curcumin and their derivatives are among compounds of interest in natural product research due to numerous pharmacological benefits including anti-inflammatory activities. Here, we investigate the effects of chemically synthesized curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65), in reducing cytokine production in histamine-induced HaCaT cells.

    METHODS: Interleukin (IL)-6 cytokine production in histamine-induced HaCaT cells were measured using enzyme-linked immunosorbent assay (ELISA) and cytotoxicity effects were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the inhibitory effects of MS65 on nuclear factor-kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways.

    RESULTS: Histamine enhanced IL-6 production in HaCaT cells, with the highest production of IL-6 at 97.41 ± 2.33 pg/mL after 24 h of exposure. MS65 demonstrated a promising anti-inflammatory activity by inhibiting IL-6 production with half maximal inhibitory concentration (IC50) value of 4.91 ± 2.50 μM and median lethal concentration (LC50) value of 28.82 ± 7.56 μM. In gene expression level, we found that MS65 inhibits NF-κB and MAPK pathways through suppression of IKK/IκB/NFκB and c-Raf/MEK/ERK inflammatory cascades.

    CONCLUSION: Taken together, our results suggest that MS65 could be used as a lead compound on developing new medicinal agent for the treatment of allergic skin diseases.

    Matched MeSH terms: Histamine/metabolism*
  11. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Receptors, Histamine/metabolism
  12. Yong YK, Zakaria ZA, Kadir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z
    BMC Complement Altern Med, 2013 Feb 14;13:32.
    PMID: 23410184 DOI: 10.1186/1472-6882-13-32
    BACKGROUND: Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO) and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats.

    METHODS: Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography-mass spectrometry (GC-MS) analysis.

    RESULTS: AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25%) achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the major constituent in AEBO was acetic acid.

    CONCLUSIONS: The experimental findings demonstrated that the anti-inflammatory activity of AEBO was due to its inhibitory effect on vascular permeability, which was suppressed as a result of the reduced expression of biochemical mediators (NO and VEGF) in tissues. Our results contribute towards the validation of the traditional use of Bixa orellana in the treatment of inflammatory disorders.

    Matched MeSH terms: Histamine/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links