CYP2E1 encodes an enzyme that participates in the activation of several carcinogenic substances. Thus, numerous studies have investigated the association between CYP2E1 polymorphisms and colorectal cancer (CRC) risk, but inconclusive results have been obtained. We performed a meta-analysis to precisely evaluate the relationship of CYP2E1 rs2031920, rs3813867, and rs6413432 polymorphisms with the susceptibility to CRC. Scopus, Web of Science and PubMed databases were searched to identify eligible studies, and the association between the polymorphisms and CRC risk was then quantitatively synthesized using different genetic models. Eighteen studies with 23,598 subjects were selected for inclusion into the analysis. Significant association between rs2031920 and an increased CRC risk was observed in homozygous (OR = 1.496, 95% CI 1.177-1.901, P = 0.001), recessive (OR = 1.467, 95% CI 1.160-1.857, P = 0.001) and allele (OR = 1.162, 95% CI 1.001-1.349, P = 0.048) models. Significant association was not found for rs3813867 and rs6413432 (P > 0.05). In conclusion, our results suggest that rs2031920, but not rs3813867 and rs6413432, is associated with the risk of CRC.
The genetic relationship between any two populations is a function of the differences between them in allele frequencies, with this relationship commonly expressed in terms of a genetic distance. For example if the two populations are homozygous for different alleles at a particular locus, the distance is the maximum possible whereas if the allele frequencies in the two populations are identical, the distance is zero. The estimated genetic distances may vary among loci. Thus, the most accurate measures of relationships will be obtained by averaging many loci (Nei, 1978). In plant and animal breeding, it is expected that a cross between two individuals originating from two populations with a large genetic distance between them will result in maximum heterosis or hybrid vigour. Many estimates of genetic distances are available in the literature but Nei’s standard genetic distance, D, (Nei, 1972, 1978) had been extensively used in studies of human, animal and plant varieties, races, breeds, strains, populations, species and genera.
We report a case of Griscelli Syndrome (GS). Our patient initially presented with a diagnosis of haemophagocytic lymphistiocytosis (HLH). Subsequent microscopic analysis of the patient's hair follicle revealed abnormal distribution of melanosomes in the shaft, which is a hallmark for GS. Analysis of RAB27A gene in this patient revealed a homozygous mutation in exon 6, c.550C>T, p.R184X . This nonsense mutation causes premature truncation of the protein resulting in a dysfunctional RAB27A. Recognition of GS allows appropriate institution of therapy namely chemotherapy for HLH and curative haemotopoeitic stem cell transplantation.
Evaluation of: Jada SR, Lim R, Wong CI et al.: Role ofUGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients. Cancer Sci. 98(9), 1461-1467 (2007). The pharmacokinetics and toxicity of irinotecan vary widely among patients. This review focuses primarily on a study of the role of UGT1A1*6, UGT1A1*28, and ABCG2 421C>A in three Asian cancer patient populations treated with a 3-weekly regimen of irinotecan. In that study, a statistically significantly higher level of SN-38 and a relatively lower degree of glucuronidation occurred in patients with the UGT1A1*6 homozygote genotype than in patients with the reference genotype. The UGT1A1*6 allele was associated with an increased risk of severe neutropenia. In addition, the study of gene allele frequencies in three healthy Asian populations indicated that the allelic frequency of UGT1A1*6 was higher in the healthy Chinese subjects than in the Malaysian or Indian subjects. UGT1A1*28 and ABCG2 421C>A were not associated with the pharmacokinetics of SN-38 or the severity of neutropenia. In this evaluation, we put this study into the context of similar studies of irinogenetics (irinotecan pharmacogenetics) in Asians and discuss the application of UGT1A1 testing in Asian cancer patients treated with irinotecan-containing regimens.
Homozygous familial hypercholesterolaemia (HoFH) is a severe form of FH in which inheritance of two defective or null mutations in genes associated with metabolism of low-density lipoprotein cholesterol (LDL-C) results in extremely high LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) and mortality. Treatment of HoFH comprises a multi-modal approach of statins, ezetimibe, lipoprotein apheresis; and inhibitors of proprotein convertase subtilisin/kexin type, angiopoietin-like protein 3 (ANGPTL3) and microsomal triglyceride transfer protein. These treatments are generally costly, and patients also often require treatment for ASCVD consequent to HoFH. Therefore, in the interests of both economics and preservation of life, disease prevention via genetic screening and counselling is rapidly becoming a key element in the overall management of HoFH. Guidelines are available to assist diagnosis and treatment of HoFH; however, while advancements have been made in the management of the disease, there has been little systematic attention paid to prevention. Additionally, the Middle East/North Africa (MENA) region has a higher prevalence of HoFH than most other regions - chiefly due to consanguinity. This has led to the establishment of regional lipid clinics and awareness programs that have thrown education and awareness of HoFH into sharp focus. Incorporation of principles of prevention, education, awareness, and data from real-world use of existing therapeutics will significantly enhance the effectiveness of future guidelines for the management of HoFH, particularly in the MENA region.
The aim of this study was to adapt MARMS with some modifications to detect beta mutation in our cohort of thalassemia patients. We focused only on transfusion-dependent thalassemia Malay patients, the predominant ethnic group (95%) in the Kelantanese population. Eight mutations were identified in 46 out of 48 (95.83%) beta thalassemia alleles. Most of the patients (54.2%) were compound heterozygous with co-inheritance Cd 26 (G>A). The frequencies of spectrum beta chain mutation among these patients are presented in Table 2. Among the transfusion dependent beta thalassemia Malay patients studied, 26 patients were found to be compound heterozygous and the main alleles were Cd 26 (G>A). Compound heterozygous mutation of Cd 26 (G>A) and IVS 1-5 (G>C) were 12 (46.2%), Cd 26 (G>A) and Cd 41/42 (TTCT) were 9 (34.6%), Cd 26 (G>A) and IVS 1-1 (G>C) were 2 (7.7%) respectively. Meanwhile the minority were made of a single compound heterozygous of Cd 26 (G>A) and Cd 71/72, Cd 26 (>A) and Cd 17 (A>T), Cd 26 (G>A) and -28 (G>A) respectively. Twenty out of forty six patients were shown to have homozygous of IVS 1-5 (G>C) were 2 (10.0%), Cd 26 (G>A) were 15 (75.0%), Cd 19 (A>G) were 1 (5.0%), and IVS 1-1 (G>T) were 2 (10.0%). The beta chain mutations among the Kelantanese Malays followed closely the distribution of beta chain mutations among the Thais and the Malays of the Southern Thailand. The G-C transition at position 5 of the IVS 1-5 mutation was predominant among the Malay patients. In conclusion, this method has successfully identified the mutation spectrum in our cohort of transfusion-dependent beta thalassemia patients, and this method is equally effective in screening for mutation among thalassemia patients.
Epistasis (gene-gene interaction) is a ubiquitous component of the genetic architecture of complex traits such as susceptibility to common human diseases. Given the strong negative correlation between circulating adiponectin and resistin levels, the potential intermolecular epistatic interactions between ADIPOQ (SNP+45T > G, SNP+276G > T, SNP+639T > C and SNP+1212A > G) and RETN (SNP-420C > G and SNP+299G > A) gene polymorphisms in the genetic risk underlying type 2 diabetes (T2DM) and metabolic syndrome (MS) were assessed. The potential mutual influence of the ADIPOQ and RETN genes on their adipokine levels was also examined. The rare homozygous genotype (risk alleles) of SNP-420C > G at the RETN locus tended to be co-inherited together with the common homozygous genotypes (protective alleles) of SNP+639T > C and SNP+1212A > G at the ADIPOQ locus. Despite the close structural relationship between the ADIPOQ and RETN genes, there was no evidence of an intermolecular epistatic interaction between these genes. There was also no reciprocal effect of the ADIPOQ and RETN genes on their adipokine levels, i.e., ADIPOQ did not affect resistin levels nor did RETN affect adiponectin levels. The possible influence of the ADIPOQ gene on RETN expression warrants further investigation.
Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were
The relative viabilities of homozygous and heterozygous karyotypes were measured by making crosses between strains ofD. ananassae homozygous for ST or inverted gene orders in the second and third chromosomes. The strains utilized during the present study originated from widely separated localities in India, Kuala Lumpur and Kota Kinabaru, Malaysia and Chian Mai, Thailand. The presence of heterosis in many interpopulation crosses is evident from the results which show that the inversion heterozygotes formed by chromosomes coming from distant populations exhibit heterosis. On the other hand, heterosis is absent in two intrapopulation crosses. Thus the present results provide evidence that heterozygosis for many genes and gene complexes does produce high fitness without previous selectional coadaptation.
Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
The standard laboratory strain was found to be heterozygous for susceptibility. Hence, an attempt was made to obtain a homozygous susceptible strain in Culex quinquefasciatus (Say) using single raft sib-selection method. Lab-bred females of Cx. quinquefasciatus from insectariums, Unit of Medical Entomology were used in the experiment. After blood feeding Cx. quinquefasciatus mosquitoes laid eggs in raft form, ten rafts selected randomly for the test. Each egg raft was introduced into a plastic tray from number one to number ten. Twenty-five third stage larvae from each tray were exposed to 17.5 microl from 500mg/l malathion in a paper cup label number 1 to number ten. In the bioassay, which had 100% mortality, the respective larva in that particular tray was bred to adult stage for the following generation. Less than 7days old female mosquitoes that emerged from F(0) were used in the test. The F(0) and the subsequent adult and larval stage generations were subjected to adult and larval bioassay. After selection for about 10 generations, a homozygous susceptible strain in Cx. quinquefasciatus was obtained.
Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to clinical disease caused by the Bacille Calmette-Guérin (BCG) vaccine and environmental mycobacteria. The known genetic etiologies of MSMD are inborn errors of IFN-γ immunity due to mutations of 15 genes controlling the production of or response to IFN-γ. Since the first MSMD-causing mutations were reported in 1996, biallelic mutations in the genes encoding IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 have been reported in many patients of diverse ancestries. Surprisingly, mutations of the gene encoding the IFN-γ cytokine itself have not been reported, raising the remote possibility that there might be other agonists of the IFN-γ receptor. We describe 2 Lebanese cousins with MSMD, living in Kuwait, who are both homozygous for a small deletion within the IFNG gene (c.354_357del), causing a frameshift that generates a premature stop codon (p.T119Ifs4*). The mutant allele is loss of expression and loss of function. We also show that the patients' herpesvirus Saimiri-immortalized T lymphocytes did not produce IFN-γ, a phenotype that can be rescued by retrotransduction with WT IFNG cDNA. The blood T and NK lymphocytes from these patients also failed to produce and secrete detectable amounts of IFN-γ. Finally, we show that human IFNG has evolved under stronger negative selection than IFNGR1 or IFNGR2, suggesting that it is less tolerant to heterozygous deleterious mutations than IFNGR1 or IFNGR2. This may account for the rarity of patients with autosomal-recessive, complete IFN-γ deficiency relative to patients with complete IFN-γR1 and IFN-γR2 deficiencies.
Allele Specific Amplification with four primers (External Antisense Primer, External Sense Primer, Internal Nonfragrant Sense Primer, and Internal Fragrant Antisense Primer) and sensory evaluation with leaves and grains were executed to identify aromatic rice genotypes and their F1 individuals derived from different crosses of 2 Malaysian varieties with 4 popular land races and 3 advance lines. Homozygous aromatic (fgr/fgr) F1 individuals demonstrated better aroma scores compared to both heterozygous nonaromatic (FGR/fgr) and homozygous nonaromatic (FGR/FGR) individuals, while, some F1 individuals expressed aroma in both leaf and grain aromatic tests without possessing the fgr allele. Genotypic analysis of F1 individuals for the fgr gene represented homozygous aromatic, heterozygous nonaromatic and homozygous nonaromatic genotypes in the ratio 20:19:3. Genotypic and phenotypic analysis revealed that aroma in F1 individuals was successfully inherited from the parents, but either molecular analysis or sensory evaluation alone could not determine aromatic condition completely. The integration of molecular analysis with sensory methods was observed as rapid and reliable for the screening of aromatic genotypes because molecular analysis could distinguish aromatic homozygous, nonaromatic homozygous and nonaromatic heterozygous individuals, whilst the sensory method facilitated the evaluation of aroma emitted from leaf and grain during flowering to maturity stages.
Indigenous populations of Malaysia known as Orang Asli (OA) show huge morphological, anthropological, and linguistic diversity. However, the genetic history of these populations remained obscure. We performed a high-density array genotyping using over 2 million single nucleotide polymorphisms in three major groups of Negrito, Senoi, and Proto-Malay. Structural analyses indicated that although all OA groups are genetically closest to East Asian (EA) populations, they are substantially distinct. We identified a genetic affinity between Andamanese and Malaysian Negritos which may suggest an ancient link between these two groups. We also showed that Senoi and Proto-Malay may be admixtures between Negrito and EA populations. Formal admixture tests provided evidence of gene flow between Austro-Asiatic-speaking OAs and populations from Southeast Asia (SEA) and South China which suggest a widespread presence of these people in SEA before Austronesian expansion. Elevated linkage disequilibrium (LD) and enriched homozygosity found in OAs reflect isolation and bottlenecks experienced. Estimates based on Ne and LD indicated that these populations diverged from East Asians during the late Pleistocene (14.5 to 8 KYA). The continuum in divergence time from Negritos to Senoi and Proto-Malay in combination with ancestral markers provides evidences of multiple waves of migration into SEA starting with the first Out-of-Africa dispersals followed by Early Train and subsequent Austronesian expansions.
CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.
Introduction: Filipino β°-deletion is predominant among the β-thalassaemia patients in the indigenous population of Sabah, Malaysia particularly among the Kadazandusun. Individuals who co-inherit with α- and β-thalassaemia will demonstrate milder clinical symptoms with modified complete blood count (CBC) and Hb subtype parameters. HBS1L-MYB variants act as one of the key regulator of haematopoiesis and erythropoiesis and display strong association
with variation of HbF levels. Therefore, this study aims to evaluate the association between genetic variants in HBS1L-MYB with Hb subtypes level among Filipino β°-deletion carriers co-inherited with -α3.7 deletion. Methods: Filipino β°-deletion and -α3.7 deletion were identified using gap-polymerase chain reaction (PCR). A total of 34 subjects found with coinheritance of Filipino β°-deletion and -α3.7 deletion were subjected for HBS1L-MYB intergenic polymorphisms (HMIP) analysis. Hb subtypes level were quantified using BioRad Variant II Hb analyser. Genotyping of HBS1L-MYB variants rs9399137 and rs11759553 was done using own designed tetra primer ARMS-PCR. Results: The minor allele frequencies (MAF) of the two HMIP is found more than 0.05 (rs11759553, MAF=0.18 and rs9399137, MAF=0.15), indicating the significance of these variants among the study subjects. Significant difference was found between HbF level and HBS1L-MYB variant rs11759553 with p-value less than 0.05 (p=0.001). Subjects with homozygous genotype for rs11759553 (T/T) was found with higher HbF, followed by heterozygous (A/T) and wild type (A/A). rs11759553 and rs9399137 was found did not influence the level of HbA and HbA2. HMIP of rs11759553 and rs9399137 are found significant among Filipino β°-deletion carriers co-inherited with -α3.7deletion with its high minor allelic frequency and high HbF level. Strong association with HbF level was demonstrated when
coinheritance of rs11759553. Conclusion: This study demonstrates that there are significant associations between certain genetic variants in HBS1L-MYB with Hb subtypes level among Filipino β°-deletion carriers co-inherited with -α3.7 deletion.
The application of PCR technique in genetic screening was demonstrated using the genetic materials from buccal cells of the students in the class. Two factors were taken into consideration when designing the experiments. The DNA region to be amplified should not be associated with any disease state. This is to eliminate any emotional and ethical problems associated with the experiments. In this practical, the presence and absence of a 38 bp sequence in the intron of COLIA2 gene were studied. The students were also shown on how to analyse the presence of homozygous and heterozygous alleles and the genetic variations that might be observed in the different ethnic groups of students. Another factor was the time taken to complete the experiment. Our experience showed that this experiment would take at least six hours to obtain and analyse the results. It is therefore suitable to be used in class teaching.