Displaying all 11 publications

Abstract:
Sort:
  1. Abdullah AR, Woon WC, Bakar RA
    Bull Environ Contam Toxicol, 1996 Jul;57(1):155-62.
    PMID: 8661474
    Matched MeSH terms: Industrial Oils/analysis*
  2. Mohammed Falalu Hamza, Chandra MS, Zulkifli Merican Aljunid Merican, Hassan Soleimani, D. SK
    Sains Malaysiana, 2017;46:1641-1450.
    Foam flooding technique, commonly known as foam assisted water alternating gas method (FAWAG) has been identified as an effective chemical enhanced oil recovery (CEOR) technique. The ability of EOR-foam to sweep oil in low permeable zones makes it important displacement fluid in the oil industry. However, extreme reservoir conditions such as temperature, pressure and salinity have detrimental effects on the stability and the overall performance of the EOR-foam. Consequently, understanding foam stability and performance under different conditions is crucial for long term oil field application. This paper discusses the current status of the EOR-foam stability, performance and challenges from laboratory studies to field application perspective. The paper also highlights the knowledge gaps which require further research for successful field application.
    Matched MeSH terms: Industrial Oils
  3. Nur-Atiqah Jalaludin, Salmah Yaakop, Faszly Rahim
    Sains Malaysiana, 2018;47:1961-1967.
    Termites are found in various habitats, particularly diverse communities occurring in tropical forest and peatlands.
    Termites are beneficial insects, which function as soil engineers, improving the soil quality. However, in peatlands
    converted to commercial oil palm plantations, they are considered as pests. There is lack of studies on termite communities
    in converted peatlands in Peninsular Malaysia. Thus, this study investigated termite species associated with oil palm
    stands in three soil types (clay, shallow peat and deep peat) in Endau Rompin Plantation. The stand scouting method
    was used to record the numbers and types of termites associated with palm trees in the individual stands on different
    soil types. A total of 29 termite species associated with the palm stands were identified morphologically. All the species
    belonged to the families Rhinotermitidae and Termitidae. Twenty-three of the 29 species were found in the shallow peat,
    16 in clay soil and 15 in deep peat. The community structure was synthesized by two-way cluster analysis with Sorensen
    (Bray Curtis) distance measure. Five termite groups associated with two soil types (clay soil and shallow/deep peat)
    were generated. Moisture levels and organic content were likely to determine the presence of soil feeders identified in
    the presence study. This study provides information on the status of termite species in oil palm plantation areas. Such
    information may be useful in future planning strategies by the plantation management.
    Matched MeSH terms: Industrial Oils
  4. Agamuthu P, Abioye OP, Aziz AA
    J Hazard Mater, 2010 Jul 15;179(1-3):891-4.
    PMID: 20392562 DOI: 10.1016/j.jhazmat.2010.03.088
    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.
    Matched MeSH terms: Industrial Oils/analysis*
  5. Balakrishnan K, Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Jan;128:788-91.
    PMID: 23186664 DOI: 10.1016/j.biortech.2012.10.023
    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.
    Matched MeSH terms: Industrial Oils*
  6. Yahya MS, Syafiq M, Ashton-Butt A, Ghazali A, Asmah S, Azhar B
    Ecol Evol, 2017 08;7(16):6314-6325.
    PMID: 28861235 DOI: 10.1002/ece3.3205
    Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
    Matched MeSH terms: Industrial Oils
  7. Shuhada SN, Salim S, Nobilly F, Zubaid A, Azhar B
    Ecol Evol, 2017 09;7(18):7187-7200.
    PMID: 28944010 DOI: 10.1002/ece3.3273
    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
    Matched MeSH terms: Industrial Oils
  8. Mohd Muzamir Mahat, Nurfazianawatie Mohd Zin, Nurul Afaah Abdullah, Salifairus Mohammad Jafar, Mohd Firdaus Malek, M. Rusop, et al.
    Science Letters, 2020;14(2):24-33.
    MyJurnal
    The synthesis of graphene by double thermal chemical vapor deposition (DTCVD) using waste of industrial cooking oil (WICO) as a natural carbon source was investigated. The synthesis parameter (Argon gas flow rate) was varied between 50sccm to 300sccm by 50sccm increments. The function of Argon gas is to provide ambient condition, remove the atmospheric air from the tube and could improve the crystallinity of graphene during synthesis. WICO (from AYAMAS food processing) was placed in the first furnace (precursor furnace) and nickel was placed in the second furnace (deposition furnace). During the synthesis, elevated quantities of carbon from the source material are separated and precipitated on the Nickel surface. The sample were characterized by using Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Ultraviolet Visible (UV-Vis) spectroscopy. Based on FESEM images, at 250sccm, hexagonal graphene formation was observed. Besides, optical properties can be seen by UV-Vis and as the results show that 250sccm is the highest reflectivity value. Consequently, graphene synthesis from WICO using various Argon gas flow rate as precursor is successfully demonstrated.
    Matched MeSH terms: Industrial Oils
  9. Olujobi OJ
    Heliyon, 2021 Feb;7(2):e06123.
    PMID: 33659729 DOI: 10.1016/j.heliyon.2021.e06123
    Insolvency and business recovery laws in Nigeria have not evolved to incorporate reorganisation, reforming insolvent oil firms' operations to boost commercial oil firms' steadiness and economic suitability like other moderately developed countries. In Nigeria, liquidation is understood by many as the panacea to indebtedness. The research evaluates the Nigerian insolvency and business recovery legal regime to sustain indebted oil firms from economic shocks due to the global decline in the oil price to avert imminent business failures due to insufficient cash flows. The aim is to fill the gaps in Nigeria's insolvency and business recovery laws by recommending a model for the sustenance of oil firms and to suggest the reform of the gaps identified in the existing laws and the extant literature on the subject. The paper opted for conceptual legal review, comparative legal and policies analyses of solvency and business recovery legislations in Nigeria, Malaysia, India, South Africa, the United Kingdom and the United States. These nations were designated for this study because their insolvency and business recovery legal regime are business rescued driven, not winding up centred. The study is library research-based to address some of the flaws in Nigeria's insolvency and business recovery laws. The study finds that Nigerian legislation on insolvency is flawed in oil firms' salvage, improvement and rearrangement. It ends that, statutory bodies in the designated case study nations are efficient than those in Nigeria due to the strong political will of their governments in supporting insolvent oil firms for successful financial recovery, to safeguard jobs, to protect creditors and to enhance the wealth of their nations through sound business recovery policies and laws. The study, advocates, remodel of Nigeria's insolvency and business recovery legislations and policies in compliance with the international standards on insolvent oil firms salvaged and creditors focused policies for a robust economy. The study concludes with the recommendation for further study to consider quantitative analysis research methodology to project further scholarship on the subject.
    Matched MeSH terms: Industrial Oils
  10. Singh AK, Hakimi MH, Kumar A, Ahmed A, Abidin NSZ, Kinawy M, et al.
    Sci Rep, 2020 12 17;10(1):22108.
    PMID: 33335176 DOI: 10.1038/s41598-020-78906-x
    A high bituminous shale horizon from the Gurha mine in the Bikaner sub-basin of the Rajasthan District, NW India, was studied using a collection of geochemical and petrological techniques. This study investigated the nature and environmental conditions of the organic matter and its relation to the unconventional oil-shale resources of the bituminous shale. The analyzed shales have high total organic carbon and total sulfur contents, suggesting that these shale sediments were deposited in a paralic environment under reducing conditions. The dominant presence of organic matter derived from phytoplankton algae suggests warm climatic marine environment, with little connection to freshwater enhancing the growth of algae and other microorganisms. The analyzed bituminous shales have high aquatic-derived alginite organic matters, with low Pr/Ph, Pr/n-C17, and Ph/n-C18 ratios. It is classified as Type II oil-prone kerogen, consistent with high hydrogen index value. Considering the maturity indicators of geochemical Tmax (
    Matched MeSH terms: Industrial Oils
  11. Ong AL, Teh CK, Kwong QB, Tangaya P, Appleton DR, Massawe F, et al.
    Sci Rep, 2019 04 29;9(1):6619.
    PMID: 31036825 DOI: 10.1038/s41598-019-42989-y
    Meiotic crossovers in outbred species, such as oil palm (Elaeis guineensis Jacq., 2n = 32) contribute to allelic re-assortment in the genome. Such genetic variation is usually exploited in breeding to combine positive alleles for trait superiority. A good quality reference genome is essential for identifying the genetic factors underlying traits of interest through linkage or association studies. At the moment, an AVROS pisifera genome is publicly available for oil palm. Distribution and frequency of crossovers throughout chromosomes in different origins of oil palm are still unclear. Hence, an ultrahigh-density genomic linkage map of a commercial Deli dura x AVROS pisifera family was constructed using the OP200K SNP array, to evaluate the genetic alignment with the genome assembly. A total of 27,890 linked SNP markers generated a total map length of 1,151.7 cM and an average mapping interval of 0.04 cM. Nineteen linkage groups represented 16 pseudo-chromosomes of oil palm, with 61.7% of the mapped SNPs present in the published genome. Meanwhile, the physical map was also successfully extended from 658 Mb to 969 Mb by assigning unplaced scaffolds to the pseudo-chromosomes. A genic linkage map with major representation of sugar and lipid biosynthesis pathways was subsequently built for future studies on oil related quantitative trait loci (QTL). This study improves the current physical genome of the commercial oil palm, and provides important insights into its recombination landscape, eventually unlocking the full potential genome sequence-enabled biology for oil palm.
    Matched MeSH terms: Industrial Oils
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links