Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Amir A, Shahari S, Liew JWK, de Silva JR, Khan MB, Lai MY, et al.
    Acta Trop, 2020 Nov;211:105596.
    PMID: 32589995 DOI: 10.1016/j.actatropica.2020.105596
    Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.
    Matched MeSH terms: Malaria/veterinary*
  2. Fong YL, Cadigan FC, Coatney GR
    Trans R Soc Trop Med Hyg, 1971;65(6):839-40.
    PMID: 5003320
    Matched MeSH terms: Malaria/veterinary
  3. Cheong WH, Ben Omar AH, Warren M
    Med J Malaya, 1966 Jun;20(4):327-9.
    PMID: 4380826
    Matched MeSH terms: Malaria/veterinary*
  4. Killick-Kendrick R, Garnham PC, Cheong WH, Cadigan FC, Peters W, Rajapaksa N
    PMID: 4652473
    Matched MeSH terms: Malaria/veterinary*
  5. Skippon J, Garnham PC
    PMID: 4204752 DOI: 10.1016/0035-9203(73)90254-x
    Matched MeSH terms: Malaria/veterinary
  6. Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, et al.
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2780.
    PMID: 24676231 DOI: 10.1371/journal.pntd.0002780
    BACKGROUND: The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans.

    METHODOLOGY/PRINCIPAL FINDINGS: After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region.

    CONCLUSIONS/SIGNIFICANCE: We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.

    Matched MeSH terms: Malaria/veterinary*
  7. Fong MY, Lau YL, Chang PY, Anthony CN
    Parasit Vectors, 2014;7:161.
    PMID: 24693997 DOI: 10.1186/1756-3305-7-161
    The monkey malaria parasite Plasmodium knowlesi is now recognized as the fifth species of Plasmodium that can cause human malaria. Like the region II of the Duffy binding protein of P. vivax (PvDBPII), the region II of the P. knowlesi Duffy binding protein (PkDBPαII) plays an essential role in the parasite's invasion into the host's erythrocyte. Numerous polymorphism studies have been carried out on PvDBPII, but none has been reported on PkDBPαII. In this study, the genetic diversity, haplotyes and allele groups of PkDBPαII of P. knowlesi clinical isolates from Peninsular Malaysia were investigated.
    Matched MeSH terms: Malaria/veterinary*
  8. Vythilingam I, Tan CH, Asmad M, Chan ST, Lee KS, Singh B
    Trans R Soc Trop Med Hyg, 2006 Nov;100(11):1087-8.
    PMID: 16725166
    Four species of malaria parasites are known to infect humans. A fifth species, Plasmodium knowlesi, has been reported to infect humans in Malaysian Borneo. Here we report for the first time the incrimination of Anopheles latens as the vector of P. knowlesi among humans and monkeys in Sarawak, Malaysia.
    Matched MeSH terms: Malaria/veterinary
  9. Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al.
    Infect Genet Evol, 2016 06;40:243-252.
    PMID: 26980604 DOI: 10.1016/j.meegid.2016.03.009
    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes.
    Matched MeSH terms: Malaria/veterinary*
  10. Coatney GR
    Am J Trop Med Hyg, 1971 Nov;20(6):795-803.
    PMID: 5002245
    Matched MeSH terms: Malaria/veterinary*
  11. Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B
    Malar J, 2020 Oct 01;19(1):350.
    PMID: 33004070 DOI: 10.1186/s12936-020-03424-0
    BACKGROUND: Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand.

    METHODS: A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    RESULTS: Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi.

    CONCLUSIONS: The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.

    Matched MeSH terms: Malaria/veterinary*
  12. Jeyaprakasam NK, Liew JWK, Low VL, Wan-Sulaiman WY, Vythilingam I
    PLoS Negl Trop Dis, 2020 12;14(12):e0008900.
    PMID: 33382697 DOI: 10.1371/journal.pntd.0008900
    Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
    Matched MeSH terms: Malaria/veterinary*
  13. Takenaka A, Ueda S, Terao K, Takenaka O
    Mol Biol Evol, 1991 May;8(3):320-6.
    PMID: 2072861
    Alpha-globin genes in crab-eating macaques were found to be triplicated at high frequencies according to restriction-enzyme comparisons. The frequencies of triplicated alpha-globin genes in macaques originally from Malaysia and Indonesia were 0.432 and 0.275, respectively, while no triplication was found in individuals from either the Philippines or northern and central Thailand. Quadruplicated alpha-globin genes were also observed, at frequencies of 0.045 (Malaysia), 0.075 (Indonesia), and 0.021 (the Philippines). A single locus was detected in only one of 40 chromosomes from Indonesia (frequency 0.025).
    Matched MeSH terms: Malaria/veterinary
  14. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

    Matched MeSH terms: Malaria/veterinary*
  15. Muul I, Yap LF, Lim BL
    PMID: 4203491
    Matched MeSH terms: Malaria/veterinary
  16. Peters W
    Philos Trans R Soc Lond B Biol Sci, 1976 Sep 28;275(941):439-82.
    PMID: 10589
    The primary objective of this project was to study the life cycle and ecology of Plasmodium pitheci, a malaria parasite of the orang-utan. The field work was based on the orang-utan rehabilitation centre in the Sepilok Forest Reserve of eastern Sabah. Two visits were made to Sepilok, the first in February and March, 1972, and the second (by W.P.) in January 1974. On the first visit two species of "surrogate host" were taken to Sabah, i.e. chimpanzees and Aotus monkeys for experimental work. The arboreal habitat of the orang-utan in the dipterocarp forests of eastern Sabah is described. In the Sepilok Forest Reserve dwell gibbons and leaf-monkeys, in addition to a small population of semi-domesticated and wild, free-ranging orang-utans of various ages. Although numerous species of anopheline mosquitoes have been collected in eastern Sabah, longitudinal studies are not available. Anopheles balabacensis was caught both attracted to orang-utans and to man at Sepilok. This species which is the main vector of human malaria in the north of Borneo, is suspected also of transmitting orang-utan malaria in this part of Sabah. Repeated blood examinations have been made on a number of orang-utans in the centre since 1966 and a high prevalence of infection was recorded with Plasmodium pitheci. In 1966 10 out of 19 animals had demonstrable parasitaemia. Detailed case histories are presented to show the course of parasitaemia in several orang-utans. Infections of P. pitheci were found to run a very chronic course. During the 1972 expedition a second, previously undescribed malaria parasite of the orang-utan was discovered, and was named P. silvaticum. The new parasite was successfully transmitted both by blood inoculation and, later, by sporozoite inoculation, into splenectomized chimpanzees. Although both species of malaria parasite may cause transitory signs of illness, orang-utans in general appear to be little discomforted by the infection. The animals do however suffer from other infectious diseases such as amoebic and balantidial dysentery, and melioidosis is a serious natural hazard which may have accounted for several deaths of wild orang-utans. An unidentified, intraerythrocytic structure that appeared in the blood of one chimpanzee, which had been inoculated with blood from an orang-utan, may have contributed to its death. Detailed descriptions and illustrations of P. pitheci and P. silvaticum are given. All stages of the life cycle of P. silvaticum are known (the tissue stages having been described in the liver of a "surrogate host", the chimpanzee) but only the blood and sporogonic stages of P. pitheci have been seen. This species was not infective to a chimpanzee, although there is an earlier report of a transient infection in this host by other workers. In the blood both parasites showed a tertian periodicity. From the appearance of the tissue schizonts on the seventh day it was estimated that the complete pre-erythrocytic cycle of P. silvaticum in the chimpanzee would occupy 8 days. P...
    Matched MeSH terms: Malaria/veterinary*
  17. Abegunde AT
    Lancet, 2004;364(9441):1217.
    PMID: 15464180 DOI: 10.1016/S0140-6736(04)17132-8
    Comment on: Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, Thomas A, Conway DJ. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004 Mar 27;363(9414):1017-24. PubMed PMID: 15051281.
    Matched MeSH terms: Malaria/veterinary*
  18. Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, et al.
    Parasit Vectors, 2021 Apr 01;14(1):184.
    PMID: 33794965 DOI: 10.1186/s13071-021-04689-3
    BACKGROUND: Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods.

    METHODS: A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the "gold standard" HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria.

    RESULTS: The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P malarias in Peninsular Malaysia. The ability of Mosquito Magnet to catch some of the Anopheles mosquito species is comparable to HLC and makes it an ethical and safer alternative.

    Matched MeSH terms: Malaria/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links