Displaying all 12 publications

Abstract:
Sort:
  1. Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, et al.
    Int Arch Allergy Immunol, 2023;184(10):1010-1021.
    PMID: 37336194 DOI: 10.1159/000530960
    INTRODUCTION: Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies.

    METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches.

    RESULTS: The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk.

    CONCLUSIONS: The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.

    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  2. Shuid AN, Safi N, Haghani A, Mehrbod P, Haron MS, Tan SW, et al.
    Apoptosis, 2015 Nov;20(11):1457-70.
    PMID: 26386572 DOI: 10.1007/s10495-015-1172-7
    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/genetics
  3. Motaghed M, Al-Hassan FM, Hamid SS
    Int J Mol Med, 2014 Jan;33(1):8-16.
    PMID: 24270600 DOI: 10.3892/ijmm.2013.1563
    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15‑fold. The interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT2, IFIT3, interferon, α-inducible protein (IFI)6 (also known as G1P3), interferon regulatory factor 9 (IRF9, ISGF3), 2'-5'-oligoadenylate synthetase 1, 40/46 kDa (OAS1) and signal transducer and activator of transcription 1 (STAT1) genes all showed changes in expression following treatment with thymoquinone. The caspase 10, apoptosis-related cysteine peptidase (CASP10) gene was activated and the protein tyrosine phosphatase, receptor type, R (PTPRR) and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical MAPK and p38 MAPK pathways. These findings indicate that thymquinone targets specific genes in the estrogen metabolic and interferon pathways.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/genetics
  4. Chow YY, Chin KY
    Mediators Inflamm, 2020;2020:8293921.
    PMID: 32189997 DOI: 10.1155/2020/8293921
    A joint is the point of connection between two bones in our body. Inflammation of the joint leads to several diseases, including osteoarthritis, which is the concern of this review. Osteoarthritis is a common chronic debilitating joint disease mainly affecting the elderly. Several studies showed that inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. This stimulates the release of early-stage inflammatory cytokines like interleukin-1 beta (IL-1β), which in turn induces the activation of signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK). These events, in turn, generate more inflammatory molecules. Subsequently, collagenase like matrix metalloproteinases-13 (MMP-13) will degrade the extracellular matrix. As a result, anatomical and physiological functions of the joint are altered. This review is aimed at summarizing the previous studies highlighting the involvement of inflammation in the pathogenesis of osteoarthritis.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  5. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  6. Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM
    Braz J Microbiol, 2013 Dec;44(4):1241-50.
    PMID: 24688518
    The mitogen-activated protein (MAP) kinase pathways has been implicated in the pathogenicity of various pathogenic fungi and plays important roles in regulating pathogenicity-related morphogenesis. This work describes the isolation and characterization of MAP kinase gene, Cgl-SLT2, from Colletotrichum gloeosporioides. A DNA sequence, including 1,633 bp of Cgl-SLT2 open-reading frame and its promoter and terminator regions, was isolated via DNA walking and cloned. To analyze gene function, a gene disruption cassette containing hygromycin-resistant gene was constructed, and Cgl-SLT2 was inactivated via gene deletion. Analysis on Cgl-slt2 mutant revealed a defect in vegetative growth and sporulation as compared to the wild-type strain. When grown under nutrient-limiting conditions, hyperbranched hyphal morphology was observed in the mutant. Conidia induction for germination on rubber wax-coated hard surfaces revealed no differences in the percentage of conidial germination between the wild-type and Cgl-slt2 mutant. However, the percentage of appressorium formation in the mutant was greatly reduced. Bipolar germination in the mutant was higher than in the wild-type at 8-h post-induction. A pathogenicity assay revealed that the mutant was unable to infect either wounded or unwounded mangoes. These results suggest that the Cgl-SLT2 MAP kinase is required for C. gloeosporioides conidiation, polarized growth, appressorium formation and pathogenicity.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  7. Son YL, Ubuka T, Soga T, Yamamoto K, Bentley GE, Tsutsui K
    FASEB J, 2016 06;30(6):2198-210.
    PMID: 26929433 DOI: 10.1096/fj.201500055
    Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/genetics
  8. Siti HN, Jalil J, Asmadi AY, Kamisah Y
    Int J Mol Sci, 2021 May 11;22(10).
    PMID: 34064664 DOI: 10.3390/ijms22105063
    Rutin is a flavonoid with antioxidant property. It has been shown to exert cardioprotection against cardiomyocyte hypertrophy. However, studies regarding its antihypertrophic property are still lacking, whether it demonstrates similar antihypertrophic effect to its metabolite, quercetin. Hence, this study aimed to investigate the effects of both flavonoids on oxidative stress and mitogen-activated protein kinase (MAPK) pathway in H9c2 cardiomyocytes that were exposed to angiotensin II (Ang II) to induce hypertrophy. Cardiomyocytes were exposed to Ang II (600 nM) with or without quercetin (331 μM) or rutin (50 μM) for 24 h. A group given vehicle served as the control. The concentration of the flavonoids was chosen based on the reported effective concentration to reduce cell hypertrophy or cardiac injury in H9c2 cells. Exposure to Ang II increased cell surface area, intracellular superoxide anion level, NADPH oxidase and inducible nitric oxide synthase activities, and reduced cellular superoxide dismutase activity and nitrite level, which were similarly reversed by both rutin and quercetin. Rutin had no significant effects on phosphorylated proteins of extracellular signal-related kinases (ERK1/2) and p38 but downregulated phosphorylated c-Jun N-terminal kinases (JNK1/2), which were induced by Ang II. Quercetin, on the other hand, had significantly downregulated the phosphorylated proteins of ERK1/2, p38, and JNK1/2. The quercetin inhibitory effect on JNK1/2 was stronger than the rutin. In conclusion, both flavonoids afford similar protective effects against Ang II-induced cardiomyocyte hypertrophy, but they differently modulate MAPK pathway.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  9. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  10. Maha A, Cheong SK, Leong CF, Seow HF
    Malays J Pathol, 2009 Dec;31(2):81-91.
    PMID: 20514850 MyJurnal
    Signal transduction pathways are constitutively expressed in leukaemic cells resulting in aberrant survival of the cells. It is postulated that in cells of chemo-sensitive patients, chemotherapy induces apoptotic signals leading to cell death while survival signals are maintained in cells of chemo-resistant patients. There is very little information currently, on the expression of these mediators in patients immediately after chemotherapy initiation. We examined the expression pattern of proinflammatory cytokines, signaling molecules of the PI3K and MAPK pathways molecules and death receptor, DR5 on paired samples at diagnosis and during chemotherapy in acute myeloid leukaemia patients treated with cytosine arabinoside and daunorubicin. The results were correlated with remission status one month after chemotherapy. We found that in chemo-sensitive patients, chemotherapy significantly increased the percentage of cases expressing TNF-alpha (p = 0.025, n = 9) and IL-6 (p = 0.002, n = 11) compared to chemo-resistant cases. We also observed an increased percentage of chemo-sensitive cases expressing DR5 and phosphorylated p38, and Jnk. Thus, expression of TNF-alpha, IL-6, DR5, phospho-p38 and phospho-Jnk may regulate cell death in chemo-sensitive cases. In contrast, a significantly higher percentage of chemo-resistant cases expressed phospho-Bad (p = 0.027, n = 9). IL-beta and IL-18 were also found to be higher in chemo-resistant cases at diagnosis and during chemotherapy. Thus, expression of various cellular molecules in leukaemic blasts during chemotherapy may be useful in predicting treatment outcome. These cellular molecules may also be potential targets for alternative therapy.
    Matched MeSH terms: Mitogen-Activated Protein Kinases/genetics
  11. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
    Matched MeSH terms: JNK Mitogen-Activated Protein Kinases/genetics
  12. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY, et al.
    Breast Cancer Res Treat, 2011 Jul;128(2):301-13.
    PMID: 20686837 DOI: 10.1007/s10549-010-1055-0
    Recent gene expression profiling studies have identified five breast cancer subtypes, of which the basal-like subtype is the most aggressive. Basal-like breast cancer poses serious clinical challenges as there are currently no targeted therapies available to treat it. Although there is increasing evidence that these tumors possess specific sensitivity to cisplatin, its success is often compromised due to its dose-limiting nephrotoxicity and the development of drug resistance. To overcome this limitation, our goal was to maximize the benefits associated with cisplatin therapy through drug combination strategies. Using a validated kinase inhibitor library, we showed that inhibition of the mTOR, TGFβRI, NFκB, PI3K/AKT, and MAPK pathways sensitized basal-like MDA-MB-468 cells to cisplatin treatment. Further analysis demonstrated that the combination of the mTOR inhibitor rapamycin and cisplatin generated significant drug synergism in basal-like MDA-MB-468, MDA-MB-231, and HCC1937 cells but not in luminal-like T47D or MCF-7 cells. We further showed that the synergistic effect of rapamycin plus cisplatin on basal-like breast cancer cells was mediated through the induction of p73. Depletion of endogenous p73 in basal-like cells abolished these synergistic effects. In conclusion, combination therapy with mTOR inhibitors and cisplatin may be a useful therapeutic strategy in the treatment of basal-like breast cancers.
    Matched MeSH terms: p38 Mitogen-Activated Protein Kinases/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links