Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Chong MY, Gu B, Chan BT, Ong ZC, Xu XY, Lim E
    Int J Numer Method Biomed Eng, 2020 12;36(12):e3399.
    PMID: 32862487 DOI: 10.1002/cnm.3399
    A monolithic, fully coupled fluid-structure interaction (FSI) computational framework was developed to account for dissection flap motion in acute type B aortic dissection (TBAD). Analysis of results included wall deformation, pressure, flow, wall shear stress (WSS), von Mises stress and comparison of hemodynamics between rigid wall and FSI models. Our FSI model mimicked realistic wall deformation that resulted in maximum compression of the distal true lumen (TL) by 21.4%. The substantial movement of intimal flap mostly affected flow conditions in the false lumen (FL). Flap motion facilitated more flow entering the FL at peak systole, with the TL to FL flow split changing from 88:12 in the rigid model to 83:17 in the FSI model. There was more disturbed flow in the FL during systole (5.8% FSI vs 5.2% rigid) and diastole (13.5% FSI vs 9.8% rigid), via a λ2 -criterion. The flap-induced disturbed flow near the tears in the FSI model caused an increase of local WSS by up to 70.0% during diastole. This resulted in a significant reduction in the size of low time-averaged WSS (TAWSS) regions in the FL (113.11 cm2 FSI vs 177.44 cm2 rigid). Moreover, the FSI model predicted lower systolic pressure, higher diastolic pressure, and hence lower pulse pressure. Our results provided new insights into the possible impact of flap motion on flow in aortic dissections, which are particularly important when evaluating hemodynamics of acute TBAD. NOVELTY STATEMENT: Our monolithic fully coupled FSI computational framework is able to reproduce experimentally measured range of flap deformation in aortic dissection, thereby providing novel insights into the influence of physiological flap motion on the flow and pressure distributions. The drastic flap movement increases the flow resistance in the true lumen and causes more disturbed flow in the false lumen, as visualized through the λ2 criterion. The flap-induced luminal pressure is dampened, thereby affecting pressure measures, which may serve as potential prognostic indicators for late complications in acute uncomplicated TBAD patients.
    Matched MeSH terms: Models, Cardiovascular*
  2. Ooi HL, Ng SC, Lim E, Salamonsen RF, Avolio AP, Lovell NH
    Artif Organs, 2014 Mar;38(3):E57-67.
    PMID: 24422872 DOI: 10.1111/aor.12220
    In recent years, extensive studies have been conducted in the area of pumping state detection for implantable rotary blood pumps. However, limited studies have focused on automatically identifying the aortic valve non-opening (ANO) state despite its importance in the development of control algorithms aiming for myocardial recovery. In the present study, we investigated the performance of 14 ANO indices derived from the pump speed waveform using four different types of classifiers, including linear discriminant analysis, logistic regression, back propagation neural network, and k-nearest neighbors (KNN). Experimental measurements from four greyhounds, which take into consideration the variations in cardiac contractility, systemic vascular resistance, and total blood volume were used. By having only two indices, (i) the root mean square value, and (ii) the standard deviation, we were able to achieve an accuracy of 92.8% with the KNN classifier. Further increase of the number of indices to five for the KNN classifier increases the overall accuracy to 94.6%.
    Matched MeSH terms: Models, Cardiovascular*
  3. Jamil DF, Saleem S, Roslan R, Al-Mubaddel FS, Rahimi-Gorji M, Issakhov A, et al.
    Comput Methods Programs Biomed, 2021 May;203:106044.
    PMID: 33756187 DOI: 10.1016/j.cmpb.2021.106044
    BACKGROUND AND OBJECTIVE: Arterial diseases would lead to several serious disorders in the cardiovascular system such as atherosclerosis. These disorders are mainly caused by the presence of fatty deposits, cholesterol and lipoproteins inside blood vessel. This paper deals with the analysis of non-Newtonian magnetic blood flow in an inclined stenosed artery.

    METHODS: The Casson fluid was used to model the blood that flows under the influences of uniformly distributed magnetic field and oscillating pressure gradient. The governing fractional differential equations were expressed using the Caputo Fabrizio fractional derivative without singular kernel.

    RESULTS: The analytical solutions of velocities for non-Newtonian model were then calculated by means of Laplace and finite Hankel transforms. These velocities were then presented graphically. The result shows that the velocity increases with respect to Reynolds number and Casson parameter, while decreases when Hartmann number increases.

    CONCLUSIONS: Casson blood was treated as the non-Newtonian fluid. The MHD blood flow was accelerated by pressure gradient. These findings are beneficial for studying atherosclerosis therapy, the diagnosis and therapeutic treatment of some medical problems.

    Matched MeSH terms: Models, Cardiovascular*
  4. Athani A, Ghazali NNN, Badruddin IA, Kamangar S, Anqi AE, Algahtani A
    Biomed Mater Eng, 2022;33(1):13-30.
    PMID: 34366314 DOI: 10.3233/BME-201171
    BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease.

    OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters.

    METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation.

    RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.

    Matched MeSH terms: Models, Cardiovascular*
  5. Athani A, Ghazali NNN, Anjum Badruddin I, Kamangar S, Salman Ahmed NJ, Honnutagi A
    Biomed Mater Eng, 2023;34(1):13-35.
    PMID: 36278331 DOI: 10.3233/BME-211333
    BACKGROUND: Coronary arteries disease has been reported as one of the principal roots of deaths worldwide.

    OBJECTIVE: The aim of this study is to analyze the multiphase pulsatile blood flow in the left coronary artery tree with stenosis.

    METHODS: The 3D left coronary artery model was reconstructed using 2D computerized tomography (CT) scan images. The Red Blood Cell (RBC) and varying hemodynamic parameters for single and multiphase blood flow conditions were analyzed.

    RESULTS: Results asserted that the multiphase blood flow modeling has a maximum velocity of 1.017 m/s and1.339 m/s at the stenosed region during the systolic and diastolic phases respectively. The increase in Wall Shear Stress (WSS) observed at the stenosed region during the diastole phase as compared during the systolic phase. It was also observed that the highest Oscillatory Shear Index (OSI) regions are found in the downstream area of stenosis and across the bifurcations. The increase in RBCs velocity from 0.45 m/s to 0.6 m/s across the stenosis was also noticed.

    CONCLUSION: The computational multiphase blood flow analysis improves the understanding and accuracy of the complex flow conditions of blood elements (RBC and Plasma) and provides the progression of the disease development in the coronary arteries. This study helps to enhance the diagnosis of the blocked (stenosed) arteries more precisely compared to the single-phase blood flow modeling.

    Matched MeSH terms: Models, Cardiovascular*
  6. Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, et al.
    Ann Biomed Eng, 2023 Nov;51(11):2365-2383.
    PMID: 37466879 DOI: 10.1007/s10439-023-03322-x
    Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
    Matched MeSH terms: Models, Cardiovascular*
  7. Tan ZQ, Ooi EH, Chiew YS, Foo JJ, Ng YK, Ooi ET
    Comput Biol Med, 2024 Oct;181:109061.
    PMID: 39186904 DOI: 10.1016/j.compbiomed.2024.109061
    Sonothrombolysis is a technique that employs the ultrasound waves to break down the clot. Recent studies have demonstrated significant improvement in the treatment efficacy when combining two ultrasound waves of different frequencies. Nevertheless, the findings remain conflicted on the ideal frequency pairing that leads to an optimal treatment outcome. Existing experimental studies are constrained by the limited range of frequencies that can be investigated, while numerical studies are typically confined to spherical microbubble dynamics, thereby restricting the scope of the analysis. To overcome this, the present study investigated the microbubble dynamics caused by the different combinations of ultrasound frequencies. This was carried out using computational modelling as it enables the visualisation of the microbubble behaviour, which is difficult in experimental studies due to the opacity of blood. The results showed that the pairings of two ultrasound waves with low frequencies generally produced stronger cavitation and higher flow-induced shear stress on the clot surface. However, one should avoid the frequency pairings that are integer multipliers of each other, i.e., frequency ratio of 1/3, 1/2 and 2, as they led to resultant wave with low pressure amplitude that weakened the cavitation. At 0.5 + 0.85 MHz, the microbubble caused the highest shear stress of 60.5 kPa, due to its large translational distance towards the clot. Although the pressure threshold for inertial cavitation was reduced using dual-frequency ultrasound, the impact of the high-speed jet can only be realised when the microbubble travelled close to the clot. The results obtained from the present study provide groundwork for deeper understanding on the microbubble dynamics during dual-frequency sonothrombolysis, which is of paramount importance for its optimisations and the subsequent clinical translation.
    Matched MeSH terms: Models, Cardiovascular
  8. Lim E, Salamonsen RF, Mansouri M, Gaddum N, Mason DG, Timms DL, et al.
    Artif Organs, 2015 Feb;39(2):E24-35.
    PMID: 25345482 DOI: 10.1111/aor.12370
    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT.
    Matched MeSH terms: Models, Cardiovascular*
  9. Lim E, Alomari AH, Savkin AV, Dokos S, Fraser JF, Timms DL, et al.
    Artif Organs, 2011 Aug;35(8):E174-80.
    PMID: 21843286 DOI: 10.1111/j.1525-1594.2011.01268.x
    We propose a deadbeat controller for the control of pulsatile pump flow (Q(p) ) in an implantable rotary blood pump (IRBP). Noninvasive measurements of pump speed and current are used as inputs to a dynamical model of Q(p) estimation, previously developed and verified in our laboratory. The controller was tested using a lumped parameter model of the cardiovascular system (CVS), in combination with the stable dynamical models of Q(p) and differential pressure (head) estimation for the IRBP. The control algorithm was tested with both constant and sinusoidal reference Q(p) as input to the CVS model. Results showed that the controller was able to track the reference input with minimal error in the presence of model uncertainty. Furthermore, Q(p) was shown to settle to the desired reference value within a finite number of sampling periods. Our results also indicated that counterpulsation yields the minimum left ventricular stroke work, left ventricular end diastolic volume, and aortic pulse pressure, without significantly affecting mean cardiac output and aortic pressure.
    Matched MeSH terms: Models, Cardiovascular*
  10. Mansouri M, Salamonsen RF, Lim E, Akmeliawati R, Lovell NH
    PLoS One, 2015;10(4):e0121413.
    PMID: 25849979 DOI: 10.1371/journal.pone.0121413
    In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow ([Formula: see text]) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, [Formula: see text] for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, [Formula: see text] fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a [Formula: see text] of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach.
    Matched MeSH terms: Models, Cardiovascular*
  11. Yildirim O, Talo M, Ay B, Baloglu UB, Aydin G, Acharya UR
    Comput Biol Med, 2019 10;113:103387.
    PMID: 31421276 DOI: 10.1016/j.compbiomed.2019.103387
    In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.
    Matched MeSH terms: Models, Cardiovascular*
  12. Zain NM, Ismail Z
    PLoS One, 2023;18(2):e0276576.
    PMID: 36780455 DOI: 10.1371/journal.pone.0276576
    This paper presents a numerical analysis of blood flow in a diseased vessel within the presence of an external magnetic field. The blood flow was considered to be incompressible and fully developed, in that the non-Newtonian nature of the fluid was characterised as a generalised power law model for shear-thinning, Newtonian, and shear-thickening fluids. The impact of a transverse directed external magnetic field on blood flow through a stenosed bifurcated artery was investigated. The arterial geometry was considered as a bifurcated channel with overlapping shaped stenosis. The problem was treated mathematically using the Galerkin Least-Squares (GLS) method. The implementation of this numerical method managed to overcome the numerical instability faced by the classical Galerkin technique when adopted to a highly viscous flow. The benefit of GLS in circumventing the Ladyzhenskaya-Babuška-Brezzi (LBB) condition was utilized by evaluating both the velocity and pressure components at corner nodes of a unstructured triangular element. The non-linearity that emerged from the convective terms was then treated using the Newton-Raphson method, while the numerical integrals were computed using a Gaussian quadrature rule with six quadrature points. The findings obtained from this study were then compared with available results from the literature as well as Comsol multiphysics software to verify the accuracy and validity of the numerical algorithms. It was found that the application of magnetic field was able to overcome flow reversal by 39% for a shear-thinning fluid, 26% for a Newtonian fluid, and 27% for a shear-thickening fluid. The negative pressure and steep wall shear stress which occurs at the extremities of an overlapping stenosis throat were diminished by rise in magnetic intensity. This prevented thrombosis occurrence and produced a uniform calm flow.
    Matched MeSH terms: Models, Cardiovascular*
  13. Kamangar S, Kalimuthu G, Badruddin IA, Badarudin A, Ahmed NJ, Khan TM
    ScientificWorldJournal, 2014;2014:354946.
    PMID: 25258722 DOI: 10.1155/2014/354946
    The present study deals with the functional severity of a coronary artery stenosis assessed by the fractional flow reserve (FFR). The effects of different geometrical shapes of lesion on the diagnostic parameters are unknown. In this study, 3D computational simulation of blood flow in three different geometrical shapes of stenosis (triangular, elliptical, and trapezium) is considered in steady and transient conditions for 70% (moderate), 80% (intermediate), and 90% (severe) area stenosis (AS). For a given percentage AS, the variation of diagnostic parameters which are derived from pressure drop across the stenosis was found in three different geometrical shapes of stenosis and it was observed that FFR is higher in triangular shape and lower in trapezium shape. The pressure drop coefficient (CDP) was higher in trapezium shape and lower in triangular model whereas the LFC shows opposite trend. From the clinical perspective, the relationship between percentage AS and FFR is linear and inversely related in all the three models. A cut-off value of 0.75 for FFR was observed at 76.5% AS in trapezium model, 79.5% in elliptical model, and 82.7% AS for the triangular shaped model. The misinterpretation of the functional severity of the stenosis is in the region of 76.5%-82.7 % AS from different shapes of stenosis models.
    Matched MeSH terms: Models, Cardiovascular*
  14. Chan BT, Abu Osman NA, Lim E, Chee KH, Abdul Aziz YF, Abed AA, et al.
    PLoS One, 2013;8(6):e67097.
    PMID: 23825628 DOI: 10.1371/journal.pone.0067097
    Dilated cardiomyopathy (DCM) is the most common myocardial disease. It not only leads to systolic dysfunction but also diastolic deficiency. We sought to investigate the effect of idiopathic and ischemic DCM on the intraventricular fluid dynamics and myocardial wall mechanics using a 2D axisymmetrical fluid structure interaction model. In addition, we also studied the individual effect of parameters related to DCM, i.e. peak E-wave velocity, end systolic volume, wall compliance and sphericity index on several important fluid dynamics and myocardial wall mechanics variables during ventricular filling. Intraventricular fluid dynamics and myocardial wall deformation are significantly impaired under DCM conditions, being demonstrated by low vortex intensity, low flow propagation velocity, low intraventricular pressure difference (IVPD) and strain rates, and high-end diastolic pressure and wall stress. Our sensitivity analysis results showed that flow propagation velocity substantially decreases with an increase in wall stiffness, and is relatively independent of preload at low-peak E-wave velocity. Early IVPD is mainly affected by the rate of change of the early filling velocity and end systolic volume which changes the ventriculo:annular ratio. Regional strain rate, on the other hand, is significantly correlated with regional stiffness, and therefore forms a useful indicator for myocardial regional ischemia. The sensitivity analysis results enhance our understanding of the mechanisms leading to clinically observable changes in patients with DCM.
    Matched MeSH terms: Models, Cardiovascular*
  15. Lim E, Dokos S, Salamonsen RF, Rosenfeldt FL, Ayre PJ, Lovell NH
    Artif Organs, 2012 May;36(5):E125-37.
    PMID: 22489771 DOI: 10.1111/j.1525-1594.2012.01448.x
    Numerical models, able to simulate the response of the human cardiovascular system (CVS) in the presence of an implantable rotary blood pump (IRBP), have been widely used as a predictive tool to investigate the interaction between the CVS and the IRBP under various operating conditions. The present study investigates the effect of alterations in the model parameter values, that is, cardiac contractility, systemic vascular resistance, and total blood volume on the efficiency of rotary pump assistance, using an optimized dynamic heart-pump interaction model previously developed in our laboratory based on animal experimental measurements obtained from five canines. The effect of mean pump speed and the circulatory perturbations on left and right ventricular pressure volume loops, mean aortic pressure, mean cardiac output, pump assistance ratio, and pump flow pulsatility from both the greyhound experiments and model simulations are demonstrated. Furthermore, the applicability of some of the previously proposed control parameters, that is, pulsatility index (PI), gradient of PI with respect to pump speed, pump differential pressure, and aortic pressure are discussed based on our observations from experimental and simulation results. It was found that previously proposed control strategies were not able to perform well under highly varying circulatory conditions. Among these, control algorithms which rely on the left ventricular filling pressure appear to be the most robust as they emulate the Frank-Starling mechanism of the heart.
    Matched MeSH terms: Models, Cardiovascular*
  16. Mansor W, Crowe JA, Woolfson M, Hayes-Gill BR, Blanchfield P, Bister M
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:1383-6.
    PMID: 17945640
    In fetal heart monitoring using Doppler ultrasound signals the cardiac information is commonly extracted from non-directional signals. As a consequence often some of the cardiac events cannot be observed clearly which may lead to the incorrect detection of the valve and wall motions. Here, directional signals were simulated to investigate their enhancement of cardiac events, and hence provide clearer information regarding the cardiac activities. First, fetal Doppler ultrasound signals were simulated with signals encoding forward and reverse motion then obtained using a pilot frequency. The simulation results demonstrate that the model has the ability to produce realistic Doppler ultrasound signals and a pilot frequency can be used in the mixing process to produce directional signals that allow the simulated cardiac events to be distinguished clearly and correctly.
    Matched MeSH terms: Models, Cardiovascular*
  17. Wan Ab Naim WN, Ganesan P, Al Abed A, Lim E
    PMID: 23365977 DOI: 10.1109/EMBC.2012.6346016
    The effects of curvature and tapering on the flow progression in the aorta were studied using numerical simulations on a realistic geometrical model of the aorta and three different versions of the ideal aorta models. The results showed that tapering increases velocity magnitude and wall shear stress while local curvatures affect the skewness of the velocity profile, the thickness of the boundary layer as well as the recirculation regions. Wall shear stress distribution in the aorta serves as an important determinant in the progression of arterial disease.
    Matched MeSH terms: Models, Cardiovascular*
  18. Jahanzad Z, Liew YM, Bilgen M, McLaughlin RA, Leong CO, Chee KH, et al.
    Phys Med Biol, 2015 May 21;60(10):4015-31.
    PMID: 25919317 DOI: 10.1088/0031-9155/60/10/4015
    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3°; mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium.
    Matched MeSH terms: Models, Cardiovascular*
  19. Ahamad NA, Kamangar S, Badruddin IA
    Biomed Mater Eng, 2018;29(3):319-332.
    PMID: 29578467 DOI: 10.3233/BME-181734
    The current study investigates the curvature effect due to various angles of curvature on the blood flow in human artery. The stenosis is considered to have three sizes 70%, 80% and 90% blockage before the curve section of artery. Numerical study of four different angle of curvature was considered to understand the flow behavior of artery having various curvatures, on the hemodynamics factors that includes drop in arterial pressure, flow velocity as well as wall shear stress. It was found that, the augmentation of the flow resistance due to the curvature increases in presence of stenosis. It was also noted that the wall shear is higher at the outer wall as compared to the inside wall in four models considered. Results showed that both the curvature of artery and size of the stenosis have significant impact. These two factors should be considered by cardiologist to assess the complexity of stenosis.
    Matched MeSH terms: Models, Cardiovascular*
  20. Kamangar S, Badruddin IA, Ameer Ahamad N, Soudagar MEM, Govindaraju K, Nik-Ghazali N, et al.
    Biomed Mater Eng, 2017;28(3):257-266.
    PMID: 28527189 DOI: 10.3233/BME-171672
    The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.
    Matched MeSH terms: Models, Cardiovascular*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links