Displaying all 9 publications

Abstract:
Sort:
  1. Kalra J, Prakash A, Kumar P, Majeed AB
    J Renin Angiotensin Aldosterone Syst, 2015 Sep;16(3):459-68.
    PMID: 25944853 DOI: 10.1177/1470320315583582
    Work on the brain renin-angiotensin system has been explored by various researchers and has led to elucidation of its basic physiologies and behavior, including its role in reabsorption and uptake of body fluid, blood pressure maintenance with angiotensin II being its prominent effector. Currently, this system has been implicated for its newly established effects, which are far beyond its cardio-renal effects accounting for maintenance of cerebral blood flow and cerebroprotection, seizure, in the etiology of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and bipolar disorder. In this review, we have discussed the distribution of angiotensin receptor subtypes in the central nervous system (CNS) together with enzymatic pathways leading to active angiotensin ligands and its interaction with angiotensin receptor 2 (AT2) and Mas receptors. Secondly, the use of angiotensin analogues (angiotensin converting enzyme inhibitors and AT1 and/or AT2 receptor blockers) in the treatment and management of the CNS disorders mentioned above has been discussed.
    Matched MeSH terms: Nervous System Diseases/drug therapy
  2. Tan HY, Ng KY, Koh RY, Chye SM
    Cell Mol Neurobiol, 2020 Jan;40(1):25-51.
    PMID: 31435851 DOI: 10.1007/s10571-019-00724-1
    The progressive loss of structure and functions of neurons, including neuronal death, is one of the main factors leading to poor quality of life. Promotion of functional recovery of neuron after injury is a great challenge in neuroregenerative studies. Melatonin, a hormone is secreted by pineal gland and has antioxidative, anti-inflammatory, and anti-apoptotic properties. Besides that, melatonin has high cell permeability and is able to cross the blood-brain barrier. Apart from that, there are no reported side effects associated with long-term usage of melatonin at both physiological and pharmacological doses. Thus, in this review article, we summarize the pharmacological effects of melatonin as neuroprotectant in central nervous system injury, ischemic-reperfusion injury, optic nerve injury, peripheral nerve injury, neurotmesis, axonotmesis, scar formation, cell degeneration, and apoptosis in rodent models.
    Matched MeSH terms: Nervous System Diseases/drug therapy
  3. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, et al.
    Curr Neuropharmacol, 2019;17(3):247-267.
    PMID: 30207234 DOI: 10.2174/1570159X16666180911124605
    Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.
    Matched MeSH terms: Nervous System Diseases/drug therapy*
  4. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    Mini Rev Med Chem, 2019;19(12):980-987.
    PMID: 30868950 DOI: 10.2174/1389557519666190313161854
    Pathogenic free-living amoeba are known to cause a devastating infection of the central nervous system and are often referred to as "brain-eating amoebae". The mortality rate of more than 90% and free-living nature of these amoebae is a cause for concern. It is distressing that the mortality rate has remained the same over the past few decades, highlighting the lack of interest by the pharmaceutical industry. With the threat of global warming and increased outdoor activities of public, there is a need for renewed interest in identifying potential anti-amoebic compounds for successful prognosis. Here, we discuss the available chemotherapeutic options and opportunities for potential strategies in the treatment and diagnosis of these life-threatening infections.
    Matched MeSH terms: Central Nervous System Diseases/drug therapy*
  5. Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA
    ACS Chem Neurosci, 2019 01 16;10(1):658-666.
    PMID: 30346711 DOI: 10.1021/acschemneuro.8b00484
    Central nervous system (CNS) infections caused by free-living amoebae such as Acanthamoeba species and Naegleria fowleri are rare but fatal. A major challenge in the treatment against the infections caused by these amoebae is the discovery of novel compounds that can effectively cross the blood-brain barrier to penetrate the CNS. It is logical to test clinically approved drugs against CNS diseases for their potential antiamoebic effects since they are known for effective blood-brain barrier penetration and affect eukaryotic cell targets. The antiamoebic effects of clinically available drugs for seizures targeting gamma-amino butyric acid (GABA) receptor and ion channels were tested against Acanthamoeba castellanii belonging to the T4 genotype and N. fowleri. Three such drugs, namely, diazepam (Valium), phenobarbitone (Luminal), phenytoin (Dilantin), and their silver nanoparticles (AgNPs) were evaluated against both trophozoites and cysts stage. Drugs alone and drug conjugated silver nanoparticles were tested for amoebicidal, cysticidal, and host-cell cytotoxicity assays. Nanoparticles were synthesized by sodium borohydride reduction of silver nitrate with drugs as capping agents. Drug conjugated nanoconjugates were characterized by ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopies and atomic force microscopy (AFM). In vitro moebicidal assay showed potent amoebicidal effects for diazepam, phenobarbitone, and phenytoin-conjugated AgNPs as compared to drugs alone against A. castellanii and N. fowleri. Furthermore, both drugs and drug conjugated AgNPs showed compelling cysticidal effects. Drugs conjugations with silver nanoparticles enhanced their antiacanthamoebic activity. Interestingly, amoeba-mediated host-cell cytotoxicity was also significantly reduced by drugs alone as well as their nanoconjugates. Since, these drugs are being used to target CNS diseases, their evaluation against brain-eating amoebae seems feasible due to advantages such as permeability of the blood-brain barrier, established pharmacokinetics and dynamics, and United States Food and Drug Administration (FDA) approval. Given the limited availability of effective drugs against brain-eating amoebae, the clinically available drugs tested here present potential for further in vivo studies.
    Matched MeSH terms: Central Nervous System Diseases/drug therapy*
  6. Mazlan M, Rajasegaran S, Engkasan JP, Nawawi O, Goh KJ, Freddy SJ
    Toxins (Basel), 2015 Sep;7(9):3758-70.
    PMID: 26402703 DOI: 10.3390/toxins7093758
    This study aims to determine the most efficacious dose of Botulinum neurotoxin type A (BoNT-A) in reducing sialorrhea in Asian adults with neurological diseases. A prospective, double-blind randomized controlled trial was conducted over 24 weeks. Thirty patients with significant sialorrhea were randomly assigned to receive a BoNT-A (Dysport(®)) injection into the submandibular and the parotid glands bilaterally via an ultrasound guidance. The total dose given per patient was either BoNT-A injection of (i) 50 U; (ii) 100 U; or (iii) 200 U. The primary outcome was the amount of saliva reduction, measured by the differential weight (wet versus dry) of intraoral dental gauze at baseline and at 2, 6, 12, and 24 weeks after injection. The secondary outcome was the subjective report of drooling using the Drooling Frequency and Severity Scale (DFS). Saliva reduction was observed in response to all BoNT-A doses in 17 patients who completed the assessments. Although no statistically significant difference among the doses was found, the measured reduction was greater in groups that received higher doses (100 U and 200 U). The group receiving 200 U of Dysport(®) showed the greatest reduction of saliva until 24 weeks and reported the most significant improvement in the DFS score.
    Matched MeSH terms: Nervous System Diseases/drug therapy*
  7. Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF
    ACS Chem Neurosci, 2020 02 19;11(4):485-500.
    PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640
    Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
    Matched MeSH terms: Nervous System Diseases/drug therapy*
  8. Fong CY, Aye AM, Peyman M, Nor NK, Visvaraja S, Tajunisah I, et al.
    Pediatr Infect Dis J, 2014 Apr;33(4):424-6.
    PMID: 24378951 DOI: 10.1097/INF.0000000000000137
    We report a case of neonatal herpes simplex virus (HSV)-1 central nervous system disease with bilateral acute retinal necrosis (ARN). An infant was presented at 17 days of age with focal seizures. Cerebrospinal fluid polymerase chain reaction was positive for HSV-1 and brain magnetic resonance imaging showed cerebritis. While receiving intravenous acyclovir therapy, the infant developed ARN with vitreous fluid polymerase chain reaction positive for HSV-1 necessitating intravitreal foscarnet therapy. This is the first reported neonatal ARN secondary to HSV-1 and the first ARN case presenting without external ocular or cutaneous signs. Our report highlights that infants with neonatal HSV central nervous system disease should undergo a thorough ophthalmological evaluation to facilitate prompt diagnosis and immediate treatment of this rapidly progressive sight-threatening disease.
    Matched MeSH terms: Central Nervous System Diseases/drug therapy
  9. Asiff M, Sidi H, Masiran R, Kumar J, Das S, Hatta NH, et al.
    Curr Drug Targets, 2018;19(12):1391-1401.
    PMID: 28325146 DOI: 10.2174/1389450118666170321144931
    Hypersexuality refers to abnormally increased or extreme involvement in any sexual activity. It is clinically challenging, presents trans-diagnostically and there is extensive medical literature addressing the nosology, pathogenesis and neuropsychiatric aspects in this clinical syndrome. Classification includes deviant behaviours, diagnosable entities related to impulsivity, and obsessional phenomena. Some clinicians view an increase in sexual desire as 'normal' i.e. psychodynamic theorists consider it as egodefensive at times alleviating unconscious anxiety rooted in intrapsychic conflicts. We highlight hypersexuality as multi-dimensional involving an increase in sexual activity that is associated with distress and functional impairment. The aetiology of hypersexuality is multi-factorial with differential diagnoses that include major psychiatric disorders (e.g. bipolar disorder), adverse effects of treatments (e.g. levodopatreatment), substance-induced disorders (e.g. amphetamine substance use), neuropathological disorders (e.g. frontal lobe syndrome), among others. Numerous neurotransmitters are implicated in its pathogenesis, with dopamine and noradrenaline playing a crucial role in the neural reward pathways and emotionally- regulated limbic system neural circuits. The management of hypersexuality is determined by the principle of de causa effectu evanescent, if the causes are treated, the effect may disappear. We aim to review the role of pharmacological agents causing hypersexuality and centrally acting agents treating the associated underlying medical conditions. Bio-psycho-social determinants are pivotal in embracing the understanding and guiding management of this complex and multi-determined clinical syndrome.
    Matched MeSH terms: Nervous System Diseases/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links