Displaying all 11 publications

Abstract:
Sort:
  1. Payus AO, Liew Sat Lin C, Mohd Noh M, Jeffree MS, Ali RA
    Bosn J Basic Med Sci, 2020 Aug 03;20(3):283-292.
    PMID: 32530389 DOI: 10.17305/bjbms.2020.4860
    The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is believed to have emerged from an animal source and has been spreading rapidly among humans. Recent evidence shows that SARS-CoV-2 exhibits neurotropic properties and causes neurological diseases. Here, we review the literature on neurological involvement in SARS-CoV-2 infections and the possible mechanisms of invasion of the nervous system by this virus, to provide a summary and critical analysis of the early reporting of neurological involvement in COVID-19. An exhaustive search of scientific articles on neurological involvement in COVID-19 was performed in the Web of Science, Scopus, Medline/PubMed, and several other databases. Nineteen relevant articles that had been published or were in preprint were carefully selected according to the inclusion and exclusion criteria. Based on our research, we found that patients with COVID-19 can present with neurological symptoms that can be broadly divided into central nervous system involvement, such as headache, dizziness, altered mental state, and disorientation, and peripheral nervous system involvement, such as anosmia and hypogeusia. Most of these patients are in the older age group and exhibit comorbidities, especially hypertension, and severe infection. In extreme presentations of COVID-19, some patients exhibit seizures, stroke, flaccid paraparesis, corticospinal weakness, and even coma. Moreover, the neurological man-ifestations can occur independently of the respiratory system. In conclusion, SARS-CoV-2 infection can cause multiple neurological syndromes in a more complex presentation. Therefore, this review elucidated the involvement of the nervous system in SARS-CoV-2 infection and will hopefully help improve the management of COVID-19.
    Matched MeSH terms: Nervous System Diseases/virology*
  2. Lee KE, Umapathi T, Tan CB, Tjia HT, Chua TS, Oh HM, et al.
    Ann Neurol, 1999 Sep;46(3):428-32.
    PMID: 10482278 DOI: 10.1002/1531-8249(199909)46:3<428::AID-ANA23>3.0.C
    A novel Hendra-like paramyxovirus named Nipah virus (NiV) was the cause of an outbreak among workers from one abattoir who had contact with pigs. Two patients had only respiratory symptoms, while 9 patients had encephalitis, 7 of whom are described in this report. Neurological involvement was diverse and multifocal, including aseptic meningitis, diffuse encephalitis, and focal brainstem involvement. Cerebellar signs were relatively common. Magnetic resonance imaging scans of the brain showed scattered lesions. IgM antibodies against Hendra virus (HeV) were present in the serum of all patients. Two patients recovered completely. Five had residual deficits 8 weeks later.
    Matched MeSH terms: Nervous System Diseases/virology*
  3. Winkler AS, Knauss S, Schmutzhard E, Leonardi M, Padovani A, Abd-Allah F, et al.
    Lancet Neurol, 2020 06;19(6):482-484.
    PMID: 32470416 DOI: 10.1016/S1474-4422(20)30150-2
    Matched MeSH terms: Nervous System Diseases/virology*
  4. Olival KJ, Daszak P
    J Neurovirol, 2005 Oct;11(5):441-6.
    PMID: 16287685
    The authors review common themes in the ecology of emerging viruses that cause neurological disease. Three issues emerge. First, 49% of emerging viruses are characterized by encephalitis or serious neurological clinical symptoms. Second, all of these viruses are driven to emerge by ecological, environmental, or human demographic changes, some of which are poorly understood. Finally, the control of these viruses would be enhanced by collaborative multidisciplinary research into these drivers of emergence. The authors highlight this review with a case study of Nipah virus, which emerged in Malaysia due largely to shifts in livestock production and alterations to reservoir host habitat. Collaboration between virologists, ecologists, disease modelers and wildlife biologists has been instrumental in retracing the factors involved in this virus's emergence.
    Matched MeSH terms: Nervous System Diseases/virology*
  5. Yew MMT, Lip JQ, Ling APK
    Trop Biomed, 2021 Sep 01;38(3):435-445.
    PMID: 34608117 DOI: 10.47665/tb.38.3.086
    Ever since the first reported case series on SARS-CoV-2-induced neurological manifestation in Wuhan, China in April 2020, various studies reporting similar as well as diverse symptoms of COVID-19 infection relating to the nervous system were published. Since then, scientists started to uncover the mechanism as well as pathophysiological impacts it has on the current understanding of the disease. SARS-CoV-2 binds to the ACE2 receptor which is present in certain parts of the body which are responsible for regulating blood pressure and inflammation in a healthy system. Presence of the receptor in the nasal and oral cavity, brain, and blood allows entry of the virus into the body and cause neurological complications. The peripheral and central nervous system could also be invaded directly in the neurogenic or hematogenous pathways, or indirectly through overstimulation of the immune system by cytokines which may lead to autoimmune diseases. Other neurological implications such as hypoxia, anosmia, dysgeusia, meningitis, encephalitis, and seizures are important symptoms presented clinically in COVID-19 patients with or without the common symptoms of the disease. Further, patients with higher severity of the SARS-CoV-2 infection are also at risk of retaining some neurological complications in the long-run. Treatment of such severe hyperinflammatory conditions will also be discussed, as well as the risks they may pose to the progression of the disease. For this review, articles pertaining information on the neurological manifestation of SARS-CoV-2 infection were gathered from PubMed and Google Scholar using the search keywords "SARS-CoV-2", "COVID-19", and "neurological dysfunction". The findings of the search were filtered, and relevant information were included.
    Matched MeSH terms: Nervous System Diseases/virology*
  6. Ooi MH, Wong SC, Mohan A, Podin Y, Perera D, Clear D, et al.
    BMC Infect Dis, 2009 Jan 19;9:3.
    PMID: 19152683 DOI: 10.1186/1471-2334-9-3
    BACKGROUND: Human enterovirus 71 (HEV71) can cause Hand, foot, and mouth disease (HFMD) with neurological complications, which may rapidly progress to fulminant cardiorespiratory failure, and death. Early recognition of children at risk is the key to reduce acute mortality and morbidity.

    METHODS: We examined data collected through a prospective clinical study of HFMD conducted between 2000 and 2006 that included 3 distinct outbreaks of HEV71 to identify risk factors associated with neurological involvement in children with HFMD.

    RESULTS: Total duration of fever >or= 3 days, peak temperature >or= 38.5 degrees C and history of lethargy were identified as independent risk factors for neurological involvement (evident by CSF pleocytosis) in the analysis of 725 children admitted during the first phase of the study. When they were validated in the second phase of the study, two or more (>or= 2) risk factors were present in 162 (65%) of 250 children with CSF pleocytosis compared with 56 (30%) of 186 children with no CSF pleocytosis (OR 4.27, 95% CI2.79-6.56, p < 0.0001). The usefulness of the three risk factors in identifying children with CSF pleocytosis on hospital admission during the second phase of the study was also tested. Peak temperature >or= 38.5 degrees C and history of lethargy had the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 28%(48/174), 89%(125/140), 76%(48/63) and 50%(125/251), respectively in predicting CSF pleocytosis in children that were seen within the first 2 days of febrile illness. For those presented on the 3rd or later day of febrile illness, the sensitivity, specificity, PPV and NPV of >or= 2 risk factors predictive of CSF pleocytosis were 75%(57/76), 59%(27/46), 75%(57/76) and 59%(27/46), respectively.

    CONCLUSION: Three readily elicited clinical risk factors were identified to help detect children at risk of neurological involvement. These risk factors may serve as a guide to clinicians to decide the need for hospitalization and further investigation, including cerebrospinal fluid examination, and close monitoring for disease progression in children with HFMD.

    Matched MeSH terms: Central Nervous System Diseases/virology
  7. Ooi MH, Wong SC, Podin Y, Akin W, del Sel S, Mohan A, et al.
    Clin Infect Dis, 2007 Mar 01;44(5):646-56.
    PMID: 17278054
    BACKGROUND: Human enterovirus (HEV)-71 causes large outbreaks of hand-foot-and-mouth disease with central nervous system (CNS) complications, but the role of HEV-71 genogroups or dual infection with other viruses in causing severe disease is unclear.

    METHODS: We prospectively studied children with suspected HEV-71 (i.e., hand-foot-and-mouth disease, CNS disease, or both) over 3.5 years, using detailed virological investigation and genogroup analysis of all isolates.

    RESULTS: Seven hundred seventy-three children were recruited, 277 of whom were infected with HEV-71, including 28 who were coinfected with other viruses. Risk factors for CNS disease in HEV-71 included young age, fever, vomiting, mouth ulcers, breathlessness, cold limbs, and poor urine output. Genogroup analysis for the HEV-71-infected patients revealed that 168 were infected with genogroup B4, 68 with C1, and 41 with a newly emerged genogroup, B5. Children with HEV-71 genogroup B4 were less likely to have CNS complications than those with other genogroups (26 [15%] of 168 vs. 30 [28%] of 109; odds ratio [OR], 0.48; 95% confidence interval [CI], 0.26-0.91; P=.0223) and less likely to be part of a family cluster (12 [7%] of 168 vs. 29 [27%] of 109; OR, 0.21; 95% CI, 0.10-0.46; P

    Matched MeSH terms: Central Nervous System Diseases/virology
  8. Fong CY, Aye AM, Peyman M, Nor NK, Visvaraja S, Tajunisah I, et al.
    Pediatr Infect Dis J, 2014 Apr;33(4):424-6.
    PMID: 24378951 DOI: 10.1097/INF.0000000000000137
    We report a case of neonatal herpes simplex virus (HSV)-1 central nervous system disease with bilateral acute retinal necrosis (ARN). An infant was presented at 17 days of age with focal seizures. Cerebrospinal fluid polymerase chain reaction was positive for HSV-1 and brain magnetic resonance imaging showed cerebritis. While receiving intravenous acyclovir therapy, the infant developed ARN with vitreous fluid polymerase chain reaction positive for HSV-1 necessitating intravitreal foscarnet therapy. This is the first reported neonatal ARN secondary to HSV-1 and the first ARN case presenting without external ocular or cutaneous signs. Our report highlights that infants with neonatal HSV central nervous system disease should undergo a thorough ophthalmological evaluation to facilitate prompt diagnosis and immediate treatment of this rapidly progressive sight-threatening disease.
    Matched MeSH terms: Central Nervous System Diseases/virology
  9. Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, et al.
    J Comp Pathol, 2002 Feb-Apr;126(2-3):124-36.
    PMID: 11945001 DOI: 10.1053/jcpa.2001.0532
    A human isolate of Nipah virus from an outbreak of febrile encephalitis in Malaysia that coincided with a field outbreak of disease in pigs was used to infect eight 6-week-old pigs orally or subcutaneously and two cats oronasally. In pigs, the virus induced a respiratory and neurological syndrome consistent with that observed in the Malaysian pigs. Not all the pigs showed clinical signs, but Nipah virus was recovered from the nose and oropharynx of both clinically and sub-clinically infected animals. Natural infection of in-contact pigs, which was readily demonstrated, appeared to be acute and self-limiting. Subclinical infections occurred in both inoculated and in-contact pigs. Respiratory and neurological disease was also produced in the cats, with recovery of virus from urine as well as from the oropharynx. The clinical and pathological syndrome induced by Nipah virus in cats was comparable with that associated with Hendra virus infection in this species, except that in fatal infection with Nipah virus there was extensive inflammation of the respiratory epithelium, associated with the presence of viral antigen. Viral shedding via the nasopharynx, as observed in pigs and cats in the present study, was not a regular feature of earlier reports of experimental Hendra virus infection in cats and horses. The findings indicate the possibility of field transmission of Nipah virus between pigs via respiratory and oropharyngeal secretions.
    Matched MeSH terms: Nervous System Diseases/virology
  10. Ngwe Tun MM, Muthugala R, Nabeshima T, Rajamanthri L, Jayawardana D, Attanayake S, et al.
    J Clin Virol, 2020 04;125:104304.
    PMID: 32145478 DOI: 10.1016/j.jcv.2020.104304
    BACKGROUND: Sri Lanka experienced its largest dengue outbreak in 2017 with more than 185,000 dengue cases including at least 250 fatalities.

    OBJECTIVES: Our study aimed to characterize the clinical, immunological and virological features of confirmed dengue patients in Sri Lanka during the outbreak in 2017 when unusual manifestations of severe dengue were observed.

    STUDY DESIGN: Sera from 295 patients who were admitted to Teaching Hospital Kandy, Kandy, Sri Lanka between March 2017- January 2018 were subjected to NS1 antigen, IgM and IgG ELISAs, virus isolation, conventional and real time RT-PCR and next generation sequencing.

    RESULTS: Primary and secondary infections were detected in 48.5 % and 51.5 % of the study population, respectively. Two hundred twenty five DENV strains were isolated (219 DENV-2, one DENV-3, two DENV-4, two mixed infections of DENV-2 and -3 and one mixed infection of DENV-2 and -4). Unusual and severe manifestations such as encephalitis, encephalopathy, liver failure, kidney failure, myocarditis, Guillain-Barré syndrome and multi-organ failure were noted in 44 dengue patients with 11 deaths. The viraemia levels in patients with primary infection and unusual manifestations were significantly higher compared to those in patients with secondary infection. A new clade of DENV-2 Cosmopolitan genotype strains was observed with the strains closely related to those from China, Malaysia, Indonesia, Singapore and Taiwan.

    CONCLUSIONS: The new clade of DENV-2 cosmopolitan genotype observed in Sri Lanka in 2017 caused an unprecedented, severe dengue outbreak. The emergence of DENV-3 and DENV-4 in the 2017 outbreak might cause future outbreaks in Sri Lanka.

    Matched MeSH terms: Nervous System Diseases/virology*
  11. Gunaseelan S, Ariffin MZ, Khanna S, Ooi MH, Perera D, Chu JJH, et al.
    Nat Commun, 2022 Feb 16;13(1):890.
    PMID: 35173169 DOI: 10.1038/s41467-022-28533-z
    Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.
    Matched MeSH terms: Central Nervous System Diseases/virology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links