Displaying all 14 publications

Abstract:
Sort:
  1. Singh G
    Med J Malaysia, 1977 Dec;32(2):152-6.
    PMID: 614483
    Matched MeSH terms: Neural Pathways/physiology
  2. Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G
    Brain Topogr, 2018 11;31(6):895-916.
    PMID: 29546509 DOI: 10.1007/s10548-018-0640-0
    The brain's functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal's noise level. However, these results should be interpreted with caution given the known limitations of the sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.
    Matched MeSH terms: Neural Pathways/physiology
  3. Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al.
    J. Neuropathol. Exp. Neurol., 2008 Feb;67(2):162-9.
    PMID: 18219253 DOI: 10.1097/nen.0b013e318163a990
    Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.
    Matched MeSH terms: Neural Pathways/physiopathology; Neural Pathways/virology
  4. Adli DS, Stuesse SL, Cruce WL
    J. Comp. Neurol., 1999 Feb 15;404(3):387-407.
    PMID: 9952355
    Over 30 nuclei have been identified in the reticular formation of rats, but only a small number of distinct reticular nuclei have been recognized in frogs. We used immunohistochemistry, retrograde tracing, and cell morphology to identify nuclei within the brainstem of Rana pipiens. FluoroGold was injected into the spinal cord, and, in the same frogs, antibodies to enkephalin, substance P, somatostatin, and serotonin were localized in adjacent sections. We identified many previously unrecognized reticular nuclei. The rhombencephalic reticular formation contained reticularis (r.) dorsalis; r. ventralis, pars alpha and pars beta; r. magnocellularis; r. parvocellularis; r. gigantocellularis; r. paragigantocellularis lateralis and dorsalis; r. pontis caudalis, pars alpha and pars beta; nucleus visceralis secundarius; r. pontis oralis, pars medialis and pars lateralis; raphe obscurus; raphe pallidus; raphe magnus; and raphe pontis. The mesencephalic reticular formation contained locus coeruleus-subcoeruleus, r. cuneiformis, r. subcuneiformis, raphe dorsalis-raphe centralis superior, and raphe linearis. Thus, the reticular formation of frog, which is an anamniote, is organized complexly and is similar to the reticular formation in amniotes. Because many of these nuclei may be homologous to reticular nuclei in mammals, we used mammalian terminology for frog reticular nuclei.
    Matched MeSH terms: Neural Pathways/anatomy & histology; Neural Pathways/cytology; Neural Pathways/metabolism
  5. Ullah M, Mansor O, Ismail ZI, Kapitonova MY, Sirajudeen KN
    J Anat, 2007 Apr;210(4):428-38.
    PMID: 17428204
    The spinal nucleus of the accessory nerve (SNA) comprises the group of somata (perikarya) of motor neurons that supply the sternocleidomastoid and trapezius muscles. There are many conflicting views regarding the longitudinal extent and topography of the SNA, even in the same species, and these disagreements prompted the present investigation. Thirty Sprague-Dawley rats (15 males, 15 females) were used. The SNA was localized by retrograde axonal transport of horseradish peroxidase. Longitudinally, the SNA was found to be located in the caudal part (caudal 0.9-1.2 mm) of the medulla oblongata, the whole lengths of cervical spinal cord segments C1, C2, C3, C4, C5 and rostral fourth of C6. In the caudal part of the medulla oblongata, the SNA was represented by a group of perikarya of motor neurons lying immediately ventrolateral to the pyramidal fibres that were passing dorsolaterally after their decussation. In the spinal cord, the motor neuronal somata of the SNA were located in the dorsomedial and central columns at C1, in the dorsomedial, central and ventrolateral columns at C2 and in the ventrolateral column only at C3, C4, C5 and rostral quarter of C6. The perikarya of motor neurons supplying the sternocleidomastoid were located in the caudal part (caudal 0.9-1.2 mm) of the medulla oblongata ventrolateral to the pyramidal fibres that were passing dorsolaterally after their decussation. They were also located in the dorsomedial and central columns at C1, in the dorsomedial, central and ventrolateral columns at C2 and only in the ventrolateral column at the rostral three-quarters of C3. The perikarya of motor neurons supplying the trapezius muscle were located in the ventrolateral column only in the caudal three-quarters of C2, the whole lengths of C3, C4 and C5, and in the rostral quarter of C6.
    Matched MeSH terms: Neural Pathways*
  6. Mumtaz W, Malik AS
    Brain Topogr, 2018 09;31(5):875-885.
    PMID: 29860588 DOI: 10.1007/s10548-018-0651-x
    The choice of an electroencephalogram (EEG) reference has fundamental importance and could be critical during clinical decision-making because an impure EEG reference could falsify the clinical measurements and subsequent inferences. In this research, the suitability of three EEG references was compared while classifying depressed and healthy brains using a machine-learning (ML)-based validation method. In this research, the EEG data of 30 unipolar depressed subjects and 30 age-matched healthy controls were recorded. The EEG data were analyzed in three different EEG references, the link-ear reference (LE), average reference (AR), and reference electrode standardization technique (REST). The EEG-based functional connectivity (FC) was computed. Also, the graph-based measures, such as the distances between nodes, minimum spanning tree, and maximum flow between the nodes for each channel pair, were calculated. An ML scheme provided a mechanism to compare the performances of the extracted features that involved a general framework such as the feature extraction (graph-based theoretic measures), feature selection, classification, and validation. For comparison purposes, the performance metrics such as the classification accuracies, sensitivities, specificities, and F scores were computed. When comparing the three references, the diagnostic accuracy showed better performances during the REST, while the LE and AR showed less discrimination between the two groups. Based on the results, it can be concluded that the choice of appropriate reference is critical during the clinical scenario. The REST reference is recommended for future applications of EEG-based diagnosis of mental illnesses.
    Matched MeSH terms: Neural Pathways/physiopathology
  7. Auer T, Dewiputri WI, Frahm J, Schweizer R
    Neuroscience, 2018 May 15;378:22-33.
    PMID: 27133575 DOI: 10.1016/j.neuroscience.2016.04.034
    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.
    Matched MeSH terms: Neural Pathways/physiology
  8. Soga T, Wong DW, Clarke IJ, Parhar IS
    Neuropharmacology, 2010 Jul-Aug;59(1-2):77-85.
    PMID: 20381503 DOI: 10.1016/j.neuropharm.2010.03.018
    Citalopram is the most potent selective serotonin reuptake inhibitor (SSRI) which is used as an antidepressant but causes sexual dysfunction. Whether citalopram induced sexual dysfunction is a result of gonadotropin-releasing hormone (GnRH), kisspeptin or RF-amide related peptide (RFRP) alteration is unknown. In this study, we tested mice for sexual behavior after vehicle (0.9% NaCl) and citalopram treatment (5 mg/kg) daily for 1 day (acute) and 21 or 28 days (chronic). Effects of acute and chronic treatments on neuronal numbers and mRNA expression of GnRH, kisspeptin and RFRP were measured. In addition, RFRP fiber projections to preoptic (POA)-GnRH neurons were analyzed using double-label immunohistochemistry. The expression of 14 different serotonin receptor types mRNA was examined in immunostained laser dissected single RFRP neurons in the dorsomedial hypothalamus (DMH), however only 11 receptors types were identified. Acute citalopram treatment did not affect sexual behavior, whereas, the total duration of intromission was reduced with chronic treatment. There was no effect in the expression of kisspeptin (neuronal numbers and mRNA) in the anteroventral periventricular nucleus and the arcuate nucleus and expression of GnRH (neuronal numbers and mRNA) in the POA after citalopram treatment. However, RFRP neuronal numbers in the DMH and fiber projections to the POA were significantly increased after chronic citalopram treatment, which suggests citalopram induced inhibition of sexual behavior involves the modulation of RFRP through serotonin receptors in the DMH.
    Matched MeSH terms: Neural Pathways/drug effects; Neural Pathways/metabolism; Neural Pathways/pathology
  9. Goh CH, Abdullah JY, Idris Z, Ghani ARI, Abdullah JM, Wong ASH, et al.
    Malays J Med Sci, 2020 May;27(3):53-60.
    PMID: 32684806 DOI: 10.21315/mjms2020.27.3.6
    Background: Deep brain stimulation (DBS) was pioneered by Neuroscience team of Hospital Universiti Sains Malaysia (HUSM) nearly a decade ago to treat advanced medically refractory idiopathic Parkinson's disease (IPD) patients.

    Objectives: Brain volume reduction occurs with age, especially in Parkinson plus syndrome or psychiatric disorders. We searched to define the degree of volume discrepancy in advanced IPD patients and correlate the anatomical volumetric changes to motor symptoms and cognitive function.

    Methods: We determined the magnetic resonance imaging (MRI)-based volumetry of deep brain nuclei and brain structures of DBS-IPD group and matched controls.

    Results: DBS-IPD group had significant deep nuclei atrophy and volume discrepancy, yet none had cognitive or psychobehavioural disturbances. Globus pallidus volume showed positive correlation to higher mental function.

    Conclusion: The morphometric changes and clinical severity discrepancy in IPD may imply a more complex degenerative mechanism involving multiple neural pathways. Such alteration could be early changes before clinical manifestation.

    Matched MeSH terms: Neural Pathways
  10. Ismail I, Wahab S, Sidi H, Das S, Lin LJ, Razali R
    Curr Drug Targets, 2019;20(2):166-172.
    PMID: 28443503 DOI: 10.2174/1389450118666170425154120
    Kratom (Mitragyna speciosa), a naturally existing plant found in South-East Asia, is traditionally used as a herb to help elevate a person's energy and also to treat numerous medical ailments. Other than the analgesic property, kratom has been used as an agent to overcome opioid withdrawal as it contains natural alkaloids, i.e. mitragynine, 7-hydroxymitragynine, and MGM-9, which has agonist affinity on the opioid receptors, including mu (µ) and kappa (κ). The role of neural reward pathways linked to µ-opioid receptors and both dopaminergic and gamma-Aminobutyric acid (GABA)-ergic interneurons that express µ-opioid receptors were deliberated. However, kratom has been reported to be abused together with other illicit substances with high risk of potential addiction. There are also anecdotes of adverse effects and toxicity of kratom, i.e. tremor, fatigue, seizure, and death. Different countries have distinctive regulation and policy on the plantation and use of this plant when most of the countries banned the use of it because of its addiction problems and side effects. The aim of this review is to highlight on the potential use of kratom, unique 'herbs" as a substitution therapy for chronic pain and opioid addiction, based on the neurobiological perspective of pain and the underlying mechanism of actions of drug addiction.
    Matched MeSH terms: Neural Pathways/drug effects
  11. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

    Matched MeSH terms: Neural Pathways/drug effects; Neural Pathways/metabolism; Neural Pathways/physiopathology
  12. Suhaimi FW, Yusoff NH, Dewa A, Yusof AP
    Acta Neurol Belg, 2010 Mar;110(1):57-64.
    PMID: 20514927
    Obesity is intimately associated with hypertension; increases in blood pressure are closely related to the magnitude of weight gain. The present study aims to determine whether the excitatory amino acid input to rostral ventrolateral medulla (RVLM) contributes to elevated blood pressure in rats with diet-induced obesity. Male Sprague-Dawley rats weighing 280 to 300 grams were fed with a low-fat diet (10% kcal from fat) or moderately high-fat diet (32% kcal from fat) for 16 weeks. At week 16, rats on the moderate high-fat diet were segregated into obesity-prone and obesity-resistant rats based on body weight distribution. Baseline mean arterial pressure (MAP) was significantly higher in obesity-prone rats as compared to obesity-resistant and rats on a low-fat diet. Bilateral injection of kynurenic acid (KYN) (40 nM) into the RVLM of the obesity-prone rats reduced MAP to levels significantly different from those observed in rats on a low-fat diet and obesity-resistant rats (no change in MAP). At a lower concentration (4 nM), KYN injection did not produce any change in MAP in any group. The results obtained suggest that excitatory amino acid input to the RVLM does contribute to the development of hypertension in rats with diet-induced obesity.
    Matched MeSH terms: Neural Pathways/pathology
  13. Hescham S, Jahanshahi A, Meriaux C, Lim LW, Blokland A, Temel Y
    Behav Brain Res, 2015 Oct 1;292:353-60.
    PMID: 26119240 DOI: 10.1016/j.bbr.2015.06.032
    Deep brain stimulation (DBS) has gained interest as a potential therapy for advanced treatment-resistant dementia. However, possible targets for DBS and the optimal stimulation parameters are not yet clear. Here, we compared the effects of DBS of the CA1 sub-region of the hippocampus, mammillothalamic tract, anterior thalamic nucleus, and entorhinal cortex in an experimental rat model of dementia. Rats with scopolamine-induced amnesia were assessed in the object location task with different DBS parameters. Moreover, anxiety-related side effects were evaluated in the elevated zero maze and open field. After sacrifice, we applied c-Fos immunohistochemistry to assess which memory-related regions were affected by DBS. When comparing all structures, DBS of the entorhinal cortex and CA1 sub-region was able to restore memory loss when a specific set of stimulation parameters was used. No anxiety-related side effects were found following DBS. The beneficial behavioral performance of CA1 DBS rats was accompanied with an activation of cells in the anterior cingulate gyrus. Therefore, we conclude that acute CA1 DBS restores memory loss possibly through improved attentional and cognitive processes in the limbic cortex.
    Matched MeSH terms: Neural Pathways/physiopathology
  14. Chong HL, Ong HC, Ang LT
    Med J Malaysia, 1974 Sep;29(1):44-53.
    PMID: 4282630
    Matched MeSH terms: Neural Pathways
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links