Displaying all 8 publications

Abstract:
Sort:
  1. Wong WW, Cartwright I, Poh SC, Cook P
    Sci Total Environ, 2022 Feb 01;806(Pt 1):150408.
    PMID: 34571224 DOI: 10.1016/j.scitotenv.2021.150408
    The identification of nitrogen sources and cycling processes is critical to the management of nitrogen pollution. Here, we used both stable (δ15N-NO3-, δ18O-NO3-, δ15N-NH4+) and radiogenic (222Rn) isotopes together with nitrogen concentrations to evaluate the relative importance of point (i.e. sewage) and diffuse sources (i.e. agricultural-derived NO3- from groundwater, drains and creeks) in driving nitrogen dynamic in a shallow coastal embayment, Port Phillip Bay (PPB) in Victoria, Australia. This study is an exemplar of nitrogen-limited coastal systems around the world where nitrogen contamination is prevalent and where constraining it may be challenging. In addition to surrounding land use, we found that the distributions of NO3- and NH4+ in the bay were closely linked to the presence of drift algae. Highest NO3- and NH4+ concentrations were 315 μmol L-1 and 2140 μmol L-1, respectively. Based on the isotopic signatures of NO3- (δ15N: 0.17 to 21‰; δ18O: 3 to 26‰) and NH4+ (δ15N: 30 to 39‰) in PPB, the high nitrogen concentrations were attributed to three major sources which varied between winter and summer; (1) nitrified sewage effluent and drift algae derived NH4+ mainly during winter, (2) NO3- mixture from atmospheric deposition, drains and creeks predominantly observed during summer and (3) groundwater and sewage derived NO3- during both surveys. The isotopic composition of NO3- also suggested the removal of agriculture-derived NO3- through denitrification was prevalent during transport. This study highlights the role of terrestrial-coastal interactions on nitrogen dynamics and illustrates the importance of submarine groundwater discharge as a prominent pathway of diffuse NO3- inputs. Quantifying the relative contributions of multiple NO3- input pathways, however, require more extensive efforts and is an important avenue for future research.
    Matched MeSH terms: Nitrogen Isotopes/analysis
  2. Behkami S, Zain SM, Gholami M, Bakirdere S
    Food Chem, 2017 Feb 15;217:438-444.
    PMID: 27664656 DOI: 10.1016/j.foodchem.2016.08.130
    The potential for the isotopic ratio analysis of cattle tail hair in determining the geographical origin of raw cow milk in Peninsular Malaysia had been investigated in this research using exploratory visualization. A significant positive correlation (p<0.0001) (n=54) was noticed between δ(13)C and δ(15)N in milk with that of hair which indicated that these matrices could be used in tracing the geographical origin of animal produce and tissues, and there is a possibility that hair could be used as a substitute in building the database for the geographical traceability of milk. It was also observed that both hair and milk isotopic ratio correlations exhibited separation between the northern and southern regions. The accuracy of using isotopic ratio in determining geographical discrimination had been clearly demonstrated when several commercial milk samples from the same regions under the study were correctly assigned to the appropriate geographical clusters.
    Matched MeSH terms: Nitrogen Isotopes/analysis*
  3. Wardiatno Y, Mardiansyah, Prartono T, Tsuchiya M
    Trop Life Sci Res, 2015 Apr;26(1):53-65.
    PMID: 26019747
    Identifying potential food sources in mangrove ecosystems is complex because of the multifarious inputs from both land and sea. This study, which was conducted in the Manko mangrove ecosystem of Okinawa, Japan, determined the composition of the stable isotopes δ(13)C and δ(15)N in primary producers and macrozoobenthos to estimate the potential food sources assimilated and to elucidate the target trophic levels of the macrozoobenthos. We measured the two stable isotope signatures of three gastropods (Cerithidea sp., Cassidula mustelina, Peronia verruculata), two crabs (Grapsidae sp., Uca sp.), mangrove tree (Kandelia candel) leaves, and sediment from the mangrove ecosystem. The respective carbon and nitrogen isotope signature results were as follows: -22.4‰ and 8.6‰ for Cerithidea sp., -25.06‰ and 8‰ for C. mustelina, -22.58‰ and 8‰ for P. verruculata, -24.3‰ and 10.6‰ for unidentified Grapsidae, -21.87 ‰ and 11.5 ‰ for Uca sp., -29.81‰ and 11‰ for K. candel, and -24.23‰ and 7.2‰ for the sediment. The stable isotope assimilation signatures of the macrozoobenthos indicated sediment as their food source. Considering the trophic levels, the stable isotope values may also indicate that the five macrozoobenthos species were secondary or higher consumers.
    Matched MeSH terms: Nitrogen Isotopes
  4. Lachs L, Johari NAM, Le DQ, Safuan CDM, Duprey NN, Tanaka K, et al.
    Mar Pollut Bull, 2019 Nov;148:85-96.
    PMID: 31422307 DOI: 10.1016/j.marpolbul.2019.07.059
    Pulau Redang and Pulau Tioman have experienced huge tourism growth over the last two decades, but minimal sewage treatment may threaten the resilience of their coral reefs. This study uses stable isotope techniques to identify suitable bioindicators of sewage nutrients (δ15N) at these islands by measuring macroalgae (Lobophora spp.), gastropods (Drupella spp.), scleractinian coral (Acropora spp.), and leather coral (Sinularia spp.). At tourist hubs using seepage septic tank systems, enrichment of Acropora δ15N (Redang, +0.7‰) and Sinularia δ15N (Tioman, +0.4‰) compared to pristine background levels indicate enhanced sewage nutrient discharge. Carbon isotopes and survey data suggest that sedimentation did not confound these δ15N trends. Potential damaging effects of sewage discharge on the coral reef communities at both islands are highlighted by strong correlations between Acropora δ15N and regional variation in coral reef community structure, and exclusive occurrence of degraded reefs at regions of high sewage influence.
    Matched MeSH terms: Nitrogen Isotopes/analysis*
  5. Both S, Riutta T, Paine CET, Elias DMO, Cruz RS, Jain A, et al.
    New Phytol, 2019 03;221(4):1853-1865.
    PMID: 30238458 DOI: 10.1111/nph.15444
    Plant functional traits regulate ecosystem functions but little is known about how co-occurring gradients of land use and edaphic conditions influence their expression. We test how gradients of logging disturbance and soil properties relate to community-weighted mean traits in logged and old-growth tropical forests in Borneo. We studied 32 physical, chemical and physiological traits from 284 tree species in eight 1 ha plots and measured long-term soil nutrient supplies and plant-available nutrients. Logged plots had greater values for traits that drive carbon capture and growth, whilst old-growth forests had greater values for structural and persistence traits. Although disturbance was the primary driver of trait expression, soil nutrients explained a statistically independent axis of variation linked to leaf size and nutrient concentration. Soil characteristics influenced trait expression via nutrient availability, nutrient pools, and pH. Our finding, that traits have dissimilar responses to land use and soil resource availability, provides robust evidence for the need to consider the abiotic context of logging when predicting plant functional diversity across human-modified tropical forests. The detection of two independent axes was facilitated by the measurement of many more functional traits than have been examined in previous studies.
    Matched MeSH terms: Nitrogen Isotopes/analysis
  6. Wang J, Chen T, Zhang W, Zhao Y, Yang S, Chen A
    Food Chem, 2020 May 30;313:126093.
    PMID: 31927205 DOI: 10.1016/j.foodchem.2019.126093
    Multivariate stable isotope analysis combined with chemometrics was used to investigate and discriminate rice samples from six rice producing provinces in China (Heilongjiang, Jilin, Jiangsu, Zhejiang, Hunan and Guizhou) and four other Asian rice producing countries (Thailand, Malaysia, Philippines, and Pakistan). The stable isotope characteristics were analyzed for rice of different species cultivated with varied farming methods at different altitudes and latitudes/longitudes. The index groups of δ13C, δ15N, δ18O, 207/206Pb and 208/207Pb were screened and established for the selected samples with different geographical features by means of principal component analysis (PCA) and discriminant analysis (DA), which would provide a sound technical solution for rice traceability and serve as a template for further research on the traceability of other agricultural products, especially plant-derived products.
    Matched MeSH terms: Nitrogen Isotopes/analysis
  7. Bah AR, Rahman ZA
    ScientificWorldJournal, 2001 Nov 22;1 Suppl 2:90-5.
    PMID: 12805783
    Use of cheap, N-rich, and environmentally benign legume green manures to correct N deficiency in infertile soils is a very attractive option in the humid tropics. Understanding the influence of management and climate on their effectiveness, and quantifying their contribution to crop productivity, is therefore crucial for technology adoption and adaptation. Mineral N buildup and the contribution to N uptake in maize were studied in an Ultisol amended with fresh Gliricidia leaves. Net mineral N accumulation was compared in mulched and incorporated treatments in a field incubation study. The 15 N isotope dilution technique was used to quantify N supplied to maize by Gliricidia leaves in an alley cropping. Mineral N accumulation was slow, but was much greater after incorporation than after mulching. Also, N buildup was always higher in the topsoil (0 to 10 cm) than in the subsoil (10 to 20 cm). More NO3-N was leached than NH4-N, and the effect was greater in the incorporated treatment. Surface-applied Gliricidia leaves significantly increased N uptake by maize, and supplied >30% of the total N in the stover and >20% of that in the corn grain, even in the presence of hedgerows. Thus Gliricidia leaf mulch has immense potential to improve productivity in tropical soils.
    Matched MeSH terms: Nitrogen Isotopes
  8. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH
    PLoS One, 2016;11(3):e0152478.
    PMID: 27011317 DOI: 10.1371/journal.pone.0152478
    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with PGPR, namely, B. pumilus S1r1, K. pneumoniae Fr1, B. subtilis UPMB10 and Acinetobacter sp. S3r2 at D65 harvest. This study provides evidence that PGPR inoculation, namely, B. pumilus S1r1 can biologically fix atmospheric N2 and provide an alternative technique, besides plant breeding, to delay N remobilisation in maize plant for higher ear yield (up to 30.9%) with reduced fertiliser-N input.
    Matched MeSH terms: Nitrogen Isotopes/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links