Displaying all 8 publications

Abstract:
Sort:
  1. Dewanjee S, Dua TK, Khanra R, Das S, Barma S, Joardar S, et al.
    PLoS One, 2015;10(10):e0139831.
    PMID: 26473485 DOI: 10.1371/journal.pone.0139831
    BACKGROUND: Ipomoea aquatica (Convolvulaceae), an aquatic edible plant, is traditionally used against heavy metal toxicity in India. The current study intended to explore the protective role of edible (aqueous) extract of I. aquatica (AEIA) against experimentally induced Pb-intoxication.

    METHODS: The cytoprotective role of AEIA was measured on mouse hepatocytes by cell viability assay followed by Hoechst staining and flow cytometric assay. The effect on ROS production, lipid peroxidation, protein carbonylation, intracellular redox status were measured after incubating the hepatocytes with Pb-acetate (6.8 μM) along with AEIA (400 μg/ml). The effects on the expressions of apoptotic signal proteins were estimated by western blotting. The protective role of AEIA was measured by in vivo assay in mice. Haematological, serum biochemical, tissue redox status, Pb bioaccumulation and histological parameters were evaluated to estimate the protective role of AEIA (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication.

    RESULTS: Pb-acetate treated hepatocytes showed a gradual reduction of cell viability dose-dependently with an IC50 value of 6.8 μM. Pb-acetate treated hepatocytes exhibited significantly enhanced levels (p < 0.01) of ROS production, lipid peroxidation, protein carbonylation with concomitant depletion (p < 0.01) of antioxidant enzymes and GSH. However, AEIA treatment could significantly restore the aforementioned parameters in murine hepatocytes near to normalcy. Besides, AEIA significantly reversed (p < 0.05-0.01) the alterations of transcription levels of apoptotic proteins viz. Bcl 2, Bad, Cyt C, Apaf-1, cleaved caspases [caspase 3, caspase 8 and caspase 9], Fas and Bid. In in vivo bioassay, Pb-acetate treatment caused significantly high intracellular Pb burden and oxidative pressure in the kidney, liver, heart, brain and testes in mice. In addition, the haematological and serum biochemical factors were changed significantly in Pb-acetate-treated animals. AEIA treatment restored significantly the evaluated-parameters to the near-normal position.

    CONCLUSION: The extract may offer the protective effect via counteracting with Pb mediated oxidative stress and/or promoting the elimination of Pb by chelating. The presence of substantial quantities of flavonoids, phenolics and saponins would be responsible for the overall protective effect.

    Matched MeSH terms: Organometallic Compounds/toxicity*
  2. Mohamat-Yusuff F, Sarah-Nabila AG, Zulkifli SZ, Azmai MNA, Ibrahim WNW, Yusof S, et al.
    Mar Pollut Bull, 2018 Feb;127:150-153.
    PMID: 29475647 DOI: 10.1016/j.marpolbul.2017.11.046
    This study was conducted to investigate the median lethal concentration (LC50) of copper pyrithione (CuPT) at 96-hr exposure on adult Javanese medaka (Oryzias javanicus) in revealing toxicological effects of CuPT contamination in the tropical area. Wild stock fishes were acclimatized for 14-days prior analysis. Triplicate of test tanks for seven test concentrations were placed with ten fishes each, this includes two control tanks. The behaviour of the tested fishes was manually observed through a camera. The LC50 of CuPT at 96-h was found to be 16.58mg/L. Tested fishes swam slowly in vertical movement and swam fast towards food during feeding time as the sign of stress behaviour. Meanwhile, fishes in the two control groups swam actively in a horizontal manner and no excitement during feeding time. No mortality in control groups. Results indicate CuPT to be toxic to Javanese medaka at low concentration and caused behavioural stress.
    Matched MeSH terms: Organometallic Compounds/toxicity*
  3. Ponnusamy K, Mohan M, Nagaraja HS
    Med J Malaysia, 2008 Jul;63 Suppl A:102.
    PMID: 19025005
    Lead (Pb) is a neurotoxic heavy metal and children in the developmental stage are particularly susceptible to toxic effects of lead exposure. The brain is the key organ involved in interpreting and responding to potential stressors. Epidemiological investigations have established the relationship between chronic lead exposure and cognitive impairments in young children. Excessive production of radical species plays an important role in neuronal pathology resulting from excitotoxic insults, therefore one plausible neuroprotective mechanism of bioflavonoids is partly relevant to their metal chelating and antioxidant properties. Centella asiatica (CA) is a tropical medicinal plant enriched with bioflavonoids and triterpenes and selenium, reported to rejuvenate the cells and promote physical and mental health. Bioflavonoids are claimed to be exert antimutagenic, neurotrophic and xenobiotics ameliorating and membrane molecular stabilizing effects. The objective of the present work is to study the protective antioxidant effect of pretreatment of CA extract (CAE) on lead acetate induced changes in oxidative biomarkers in the central nervous system (CNS) of mice.
    Matched MeSH terms: Organometallic Compounds/toxicity*
  4. Abubakar K, Muhammad Mailafiya M, Danmaigoro A, Musa Chiroma S, Abdul Rahim EB, Abu Bakar Zakaria MZ
    Biomolecules, 2019 09 06;9(9).
    PMID: 31489882 DOI: 10.3390/biom9090453
    Lead (Pb) is a toxic, environmental heavy metal that induces serious clinical defects in all organs, with the nervous system being its primary target. Curcumin is the main active constituent of turmeric rhizome (Curcuma longa) with strong antioxidant and anti-inflammatory properties. This study is aimed at evaluating the therapeutic potentials of curcumin on Pb-induced neurotoxicity. Thirty-six male Sprague Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and 6 rats in each of groups, i.e., the lead-treated group (LTG) (50 mg/kg lead acetate for four weeks), recovery group (RC) (50 mg/kg lead acetate for four weeks), treatment group 1 (Cur100) (50 mg/kg lead acetate for four weeks, followed by 100 mg/kg curcumin for four weeks) and treatment group 2 (Cur200) (50 mg/kg lead acetate for four weeks, followed by 200 mg/kg curcumin for four weeks). All experimental groups received oral treatment via orogastric tube on alternate days. Motor function was assessed using a horizontal bar method. The cerebellar concentration of Pb was evaluated using ICP-MS technique. Pb-administered rats showed a significant decrease in motor scores and Superoxide Dismutase (SOD) activity with increased Malondialdehyde (MDA) levels. In addition, a marked increase in cerebellar Pb concentration and alterations in the histological architecture of the cerebellar cortex layers were recorded. However, treatment with curcumin improved the motor score, reduced Pb concentration in the cerebellum, and ameliorated the markers of oxidative stress, as well as restored the histological architecture of the cerebellum. The results of this study suggest that curcumin attenuates Pb-induced neurotoxicity via inhibition of oxidative stress and chelating activity.
    Matched MeSH terms: Organometallic Compounds/toxicity
  5. Abubakar K, Mailafiya MM, Chiroma SM, Danmaigoro A, Zyoud TYT, Abdul Rahim E, et al.
    J Biochem Mol Toxicol, 2020 Jun;34(6):e22483.
    PMID: 32125074 DOI: 10.1002/jbt.22483
    INTRODUCTION: Lead (Pb) is a ubiquitous toxic heavy metal that inflicts numerous clinical consequences on humans. Curcumin is the principal component of turmeric, which is reported to have antioxidative properties. This study aimed at evaluating the ameliorative effects of curcumin on Pb-induced hepatorenal toxicity in a rat model.

    METHODS: Thirty-six male Sprague-Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and six rats each for the lead-treated group (LTG) (50 mg/kg lead acetate [Pb acetate] for 4 weeks), recovery group (50 mg/kg Pb acetate for 4 weeks and left with no treatment for another 4 weeks), treatment group 1 (Cur100) (50 mg/kg Pb acetate for 4 weeks, followed by 100 mg/kg curcumin for 4 weeks), and treatment group 2 (Cur200) (50 mg/kg Pb acetate for 4 weeks, followed by 200 mg/kg curcumin for 4 weeks). All the experimental groups received oral treatments via orogastric-tube on alternate days. Pb concentration in the liver and kidney of the rats were evaluated using inductive-coupled plasma mass spectrometry techniques.

    RESULTS: Pb-administered rats revealed significant alteration in oxidative status and increased Pb concentration in their liver and kidney with obvious reduction of hemogram and increased in leukogram as well as aberration in histological architecture of the liver and kidney. However, treatment with curcumin reduces the tissue Pb concentrations and ameliorates the above mention alterations.

    CONCLUSIONS: The results in this study suggested that curcumin attenuates Pb-induced hepatorenal toxicity via chelating activity and inhibition of oxidative stress.

    Matched MeSH terms: Organometallic Compounds/toxicity*
  6. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T
    Food Chem Toxicol, 2010 Oct;48(10):2688-94.
    PMID: 20600524 DOI: 10.1016/j.fct.2010.06.041
    Several environmental toxins with toxic effects to the bone marrow have been identified. Pathology associated with lead intoxication is due to the cellular damage mediated by free radicals. In the current study, we examined the effect of Etlingera elatior extract on lead-induced changes in the oxidative biomarkers and histology of bone marrow of rats. Sprague-Dawley rats were exposed to 500 ppm lead acetate in their drinking water for 14 days. E. elatior extract was treated orally (100mg/kg body weight) in combination with, or after lead acetate treatment. The results showed that there was a significant increase in lipid hydroperoxide, protein carbonyl content and a significant decrease in total antioxidants, super oxide dismutase, glutathione peroxidase and glutathione--S-transferase in bone marrow after lead acetate exposure. Treatment with E. elatior decreased lipid hydroperoxides and protein carbonyl contents and significantly increased total antioxidants and antioxidant enzymes. Treatments with E. elatior extract also reduced, lead-induced histopathological damage in bone marrow. In conclusion, these data suggest that E. elatior has a powerful antioxidant effect, and it protects the lead acetate-induced bone marrow oxidative damage in rats.
    Matched MeSH terms: Organometallic Compounds/toxicity*
  7. Ahmad M, Suhaimi SN, Chu TL, Abdul Aziz N, Mohd Kornain NK, Samiulla DS, et al.
    PLoS One, 2018;13(1):e0191295.
    PMID: 29329342 DOI: 10.1371/journal.pone.0191295
    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
    Matched MeSH terms: Organometallic Compounds/toxicity
  8. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Organometallic Compounds/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links