SCAN, an online survey, measured access to diagnosis, treatments and monitoring of neuroendocrine tumor (NET) patients globally. Between September and November 2019, NET patients and healthcare professionals (HCPs) completed an online, semi-standardized survey with 54 patient questions and 33 HCP questions. A total of 2359 patients with NETs and 436 HCPs responded. Misdiagnosis was common (44% [1043/2359]). Mean time to diagnosis was 4.8 years (standard deviation [SD], 6.2). Compared with global figures (60% [1407/2359]), the availability of 68 Ga-DOTA positron emission tomography (PET)/computed tomography (CT) was significantly lower in Asia (45% [126/280]) and higher in Oceania (86% [171/200]). HCPs reported that 68 Ga-DOTA PET/CT was free/affordable to fewer patients in Emerging and Developing Economies (EDE) than Advanced Economies (AE; 17% [26/150] and 59% [84/142], respectively). Compared with global data (52% [1234/2359]), patient-reported availability of peptide receptor radionuclide therapy (PRRT) was significantly lower in Asia (31% [88/280]) and higher in Oceania (61% [122/200]). Significant differences were observed in average annual NET specialist costs between AE and EDE ($1081 and $2915, respectively). Compared with AE, patients in EDE traveled further for NET specialists (1032 [SD, 1578] and 181 [SD, 496] km, respectively). Patients and HCPs both recommended referral to HCPs that were more knowledgeable in the field of NETs and had better access to NET experts/specialist centers. National care pathways, enhancing HCP NET knowledge and ensuring effective diagnostics and access to appropriate treatments are crucial to improving patient survival and NET care worldwide.
Dandruff is a common scalp condition affecting almost half of the world's population. Despite its high prevalence, the exact pathophysiology is not well established and is understood to be multifactorial, with factors such as fungal colonization, sebaceous gland activity and individual factors being implicated. There is a need for an effective and safe shampoo that can target the above factors. Hence, we have developed a shampoo formulation with properties of oil control, moisturizing, non-irritative, anti-fungal, anti-microbial and itch-relieving. In this interventional, open-label study, we evaluated the efficacy and safety of this shampoo in reducing the clinical signs of dandruff and pruritus in patients with pre-existing mild-to-moderate dandruff over a course of 21-day treatment duration through self-assessment and objective clinical evaluations. After continued use of the shampoo, there was a significant decrease in the adherent and loose scalp flaking scores. Mean pruritus scores also decreased significantly across the 21-day time points. There were also no adverse events or skin intolerances reported. This study showed that our shampoo formulation has led to a significant reduction in both adherent and loose scalp flaking and pruritus when used in individuals suffering from mild to moderate dandruff. As such, it is an ideal shampoo, which can be used to effectively control dandruff.
A new homoleptic dithiolene tungsten complex, tris-{1,2-bis(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten, was successfully synthesized via a reaction of the thiophosphate ester and sodium tungstate. The thiophosphate ester was prepared from 3,5-dimethoxybenzaldehyde via benzoin condensation to produce the intermediate 1,2-bis-(3,5-dimethoxyphenyl)-2-hydroxy-ethanone compound, followed by a reaction of the intermediate with phosphorus pentasulfide. FTIR, UV-Vis spectroscopy, 1H NMR and 13C NMR and elemental analysis confirmed the product as tris{1,2-bis-(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten with the molecular formula of C54H54O12S6W. Crystals of the product adopted a monoclinic system with space group of P2(1)/n, where a=12.756(2) Å, b=21.560(3) Å, c=24.980(4) Å and β=103.998(3)°. Three thioester ligands were attached to the tungsten as bidentate chelates to form a distorted octahedral geometry. Density functional theory calculations were performed to investigate the molecular properties in a generalized-gradient approximation framework system using Perdew-Burke-Ernzerhof functions and a double numeric plus polarization basis set. The HOMO was concentrated on the phenyl ligands, while the LUMO was found along the W(S2C2)3 rings. The theoretical optical properties showed a slight blue shift in several low dielectric solvents. The solvatochromism effect was insignificant for high polar solvents.
Two organometallic compounds known as (E)-1-ferrocenyl-(3-fluorophenyl)prop-2-en-1-one (Fc1) and (E)-1-ferrocenyl-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (Fc2) are designed and synthesized for application in dye-sensitized solar cell (DSSC) based on a donor-π-acceptor (D-π-A) architecture. By strategically introducing a methoxy group into the acceptor side of the compound, Fc2 which has adopted a D-π-A-AD structure are compared with the basic D-π-A structure of Fc1. Both compounds were characterized by utilizing the IR, NMR and UV-Vis methods. Target compounds were further investigated by X-ray analysis and studied computationally using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) approaches to explore their potential performances in DSSCs. An additional methoxy group has been proven in enhancing intramolecular charge transfer (ICT) by improving the planarity of Fc2 backbone. This good electronic communication leads to higher HOMO energy level, larger dipole moment and better short-circuit current density (Jsc) values. Eventually, the presence of methoxy group in Fc2 has improved the conversion efficiency as in comparison to Fc1 under the same conditions.
Photoelectrochemical oxidation of thiols was enhanced with a threshold potential of -0.35 V vs. Ag/AgCl by the use of a ZnPc/PCBM:P3HT/ZnO electode, which was prepared by removing the PEDOT:PSS/Au electrode of an inverted OPV device and coating it with ZnPc. A co-photocatalysis property of ZnPc was observed in the photoelectrochemistry and scanning Kelvin probe microscopy.
Copper phthalocyanine (CuPc) thin films have been prepared using a simple spin coating method. The films were annealed at 5 different temperatures (323, 373, 473, 523 and 573 K) for one hour in air. Optical properties study using the UV-Vis spectrophotometer showed that in the range of wavelength of 300-800 nm, all of the films have identical absorption coefficient patterns and there was no systematic changes with respect to annealing temperature. The film annealed at 373 K showed the highest absorbance while the lowest absorbance was shown by the film annealed at 323 K. The results showed that the optical band gaps depended on the temperature. The film annealed at 373 K has the lowest optical energy gap. Using the five annealed films, solar cell with the configuration of Ag / n-Si / CuPc / Ag were fabricated. Under the 50 W/cm2 light illumination, the current voltage measurements at room temperature were carried out on the device. The device which consists of film annealed at 373 K exhibited the best photovoltaic characteristics. The different annealing temperature also affect the photovoltaic behavior of the devices in a non-systematic way.
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
Methyl orange is one of the anionic dyes and is a major pollutant from textile industry that enters both aquatic and atmospheric systems. In this research, methyl orange was degraded using TiO2 powder and immobilized TiO2 on glass. Titanium tetra-isopropoxide (TTIP) was used for preparation of TiO2 powder using soft chemistry method, and it was immobilized on glass via paste-gel coating method. The prepared photocatalysts were characterized by XRD and SEM. Highly crystalline anatase TiO2 powder photocatalyst was obtained. Meanwhile, immobilized TiO2 was less crystalline and agglomerated onto the glass surface. TiO2 powder had higher degradation rate (71%) compared to immobilized TiO2 (52%) due to its chemical stability and larger amount of photocatalyst contacted with methyl orange during the degradation process.
This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.
Despite being disparaged for their malodorous and toxic demeanour, compounds of selenium, a bio-essential element, and tellurium, offer possibilities as therapeutic agents. Herein, their potential use as drugs, for example, as anti-viral, anti-microbial, anti-inflammatory agents, etc., will be surveyed along with a summary of the established biological functions of selenium. The natural biological functions of tellurium remain to be discovered.
A series of Zn(II)-Schiff bases I, II and III complexes were synthesized by reaction of o-phenylenediamine with 3-methylsalicylaldehyde, 4-methylsalicylaldehyde and 5-methylsalicylaldehyde. These complexes were characterized using FT-IR, UV-Vis, Diffuse reflectance UV-Vis, elemental analysis and conductivity. Complex III was characterized by XRD single crystal, which crystallizes in the triclinic system, space group P-1, with lattice parameters a=9.5444(2) Å, b=11.9407(2) Å, c=21.1732(3) Å, V=2390.24(7) Å(3), D ( c )=1.408 Mg m(-3), Z=4, F(000)=1050, GOF=0.981, R1=0.0502, wR2=0.1205. Luminescence property of these complexes was investigated in DMF solution and in the solid state. Computational study of the electronic properties of complex III showed good agreement with the experimental data.
A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].
The aim of this study was to investigate if colloidal bismuth subcitrate (CBS) can penetrate the gastric mucus barrier to reach the different sites of the antral mucosa and to estimate the time course for CBS to reach and remain in the mucosa. A single dose of CBS was administered orally to rats that were sacrificed at different time intervals post treatment. The control group received gum acacia without CBS. Colloidal bismuth subcitrate, visualised as electron dense precipitate (EDP), was seen in the gastric mucus layer, intercellular spaces and intracellularly after 30 minutes and disappeared after 6 hours. Scant amounts of EDP were observed in the gastric crypts, confined only to the upper parts of these structures. We concluded that CBS can penetrate the mucus and has a wide but uneven distribution in the gastric mucosa. Colloidal bismuth subcitrate, in the concentration given only penetrated the upper two-thirds of gastric pits and not the lower one-third. We also concluded that CBS has to be given 6 hourly to ensure its continuous presence in the gastric mucosa.
Lutetium-177 (DOTATATE) (177Lu; T1/2 6.7 days), a labelled β- and Auger-electron emitter, is widely used in treatment of neuroendocrine tumours. During performance of the procedure, staff and other patients can potentially receive significant doses in interception of the gamma emissions [113 keV (6.4%) and 208 keV (11%)] that are associated with the particle decays. While radiation protection and safety assessment are required in seeking to ensure practices comply with international guidelines, only limited published studies are available. The objectives of present study are to evaluate patient and occupational exposures, measuring ambient doses and estimating the radiation risk. The results, obtained from studies carried out in Riyadh over an 11 month period, at King Faisal Specialist Hospital and Research Center, concerned a total of 33 177Lu therapy patients. Patient exposures were estimated using a calibrated Victoreen 451P survey meter (Fluke Biomedical), for separations of 30 cm, 100 cm and 300 cm, also behind a bed shield that was used during hospitalization of the therapy patients. Occupational and ambient doses were also measured through use of calibrated thermoluminescent dosimeters and an automatic TLD reader (Harshaw 6600). The mean and range of administered activity (in MBq)) was 7115.2 ± 917.2 (4329-7955). The ambient dose at corridors outside of therapy isolation rooms was 1.2 mSv over the 11 month period, that at the nursing station was below the limit of detection and annual occupational doses were below the annual dose limit of 20 mSv. Special concern needs to be paid to comforters (carers) and family members during the early stage of radioisotope administration.
Effects of topical application of Bis[benzyl N'-(indol-3-ylmethylene)-hydrazinecarbodithioato]-zinc(II) (BHCZ) on wound healing and histology of healed wound were assessed. Sprague Dawley rats were experimentally induced wound in the posterior neck area. Tween 20 (0.2 ml of 10%) was applied to rats in Group 1 (negative control). Intrasite gel (0.2 ml) was applied topically to rats in Group 2 as reference. BHCZ at the concentrations 0.2 ml of 25, 50 and 100 mg/ml were applied to Group 3, 4 and 5, respectively. Wound dressed with BHCZ significantly healed earlier than those treated with 10% Tween 20. Also wound dressed with 100 mg/ml BHCZ accelerated the rate of wound healing compared to those dressed with intrasite gel and, 25 mg/ml and 50 mg/ml BHCZ. Histological analysis of healed wound with BHCZ showed comparatively less scar width at wound enclosure and the healed wound contained less macrophages and large amount of collagen with angiogenesis compared to wounds dressed with 10% Tween 20. Results of this study showed that wounds dressed with 100 mg/ml of BHCZ significantly enhanced acceleration of the rate of wound healing enclosure, and histology of healed wounds showed comparatively less macrophages and more collagen with angiogenesis.
We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters ( D-/ L-Glu), and D-/L-arabinose tetramethyl esters ( D-/ L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5
D
0
→
7
F1) and -0.0059 at 613 nm (5
D
0
→
7
F2), respectively, while those in CTA are +0.0463 and -0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are -0.0029 at 490 nm (5
D
4
→
7
F6), +0.0078 at 540 nm (5
D
4
→
7
F5), and -0.0018 at 552 nm (5
D
4
→
7
F5), respectively, while those in CTA are -0.0053, +0.0037, and -0.0059 at these transitions, respectively. D-/ L-Glu and D-/ L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/ L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (-)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (-)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
Lead (Pb) is a toxic, environmental heavy metal that induces serious clinical defects in all organs, with the nervous system being its primary target. Curcumin is the main active constituent of turmeric rhizome (Curcuma longa) with strong antioxidant and anti-inflammatory properties. This study is aimed at evaluating the therapeutic potentials of curcumin on Pb-induced neurotoxicity. Thirty-six male Sprague Dawley rats were randomly assigned into five groups with 12 rats in the control (normal saline) and 6 rats in each of groups, i.e., the lead-treated group (LTG) (50 mg/kg lead acetate for four weeks), recovery group (RC) (50 mg/kg lead acetate for four weeks), treatment group 1 (Cur100) (50 mg/kg lead acetate for four weeks, followed by 100 mg/kg curcumin for four weeks) and treatment group 2 (Cur200) (50 mg/kg lead acetate for four weeks, followed by 200 mg/kg curcumin for four weeks). All experimental groups received oral treatment via orogastric tube on alternate days. Motor function was assessed using a horizontal bar method. The cerebellar concentration of Pb was evaluated using ICP-MS technique. Pb-administered rats showed a significant decrease in motor scores and Superoxide Dismutase (SOD) activity with increased Malondialdehyde (MDA) levels. In addition, a marked increase in cerebellar Pb concentration and alterations in the histological architecture of the cerebellar cortex layers were recorded. However, treatment with curcumin improved the motor score, reduced Pb concentration in the cerebellum, and ameliorated the markers of oxidative stress, as well as restored the histological architecture of the cerebellum. The results of this study suggest that curcumin attenuates Pb-induced neurotoxicity via inhibition of oxidative stress and chelating activity.
The aim of our study was to correlate tumor uptake of 68Ga-DOTA-NOC positron emission tomography/computed tomography (PET/CT) with the pathological grade of neuroendocrine tumors (NETs). 68Ga-DOTA-NOC PET/CT examinations in 41 patients with histopathologically proven NETs were included in the study. Maximum standardized uptake value (SUVmax) and averaged SUV SUVmean of "main tumor lesions" were calculated for quantitative analyses after background subtraction. Uptake on main tumor lesions was compared and correlated with the tumor histological grade based on Ki-67 index and pathological differentiation. Classification was performed into three grades according to Ki-67 levels; low grade: Ki-67 <2, intermediate grade: Ki-67 3-20, and high grade: Ki-67 >20. Pathological differentiation was graded into well- and poorly differentiated groups. The values were compared and evaluated for correlation and agreement between the two parameters was performed. Our study revealed negatively fair agreement between SUVmax of tumor and Ki-67 index (r = -0.241) and negatively poor agreement between SUVmean of tumor and Ki-67 index (r = -0.094). SUVmax of low-grade, intermediate-grade, and high-grade Ki-67 index is 26.18 ± 14.56, 30.71 ± 24.44, and 6.60 ± 4.59, respectively. Meanwhile, SUVmean of low-grade, intermediate-grade, and high-grade Ki-67 is 8.92 ± 7.15, 9.09 ± 5.18, and 3.00 ± 1.38, respectively. As expected, there was statistically significant decreased SUVmax and SUVmean in high-grade tumors (poorly differentiated NETs) as compared with low- and intermediate-grade tumors (well-differentiated NETs). SUV of 68Ga-DOTA-NOC PET/CT is not correlated with histological grade of NETs. However, there was statistically significant decreased tumor uptake of 68Ga-DOTA-NOC in poorly differentiated NETs as compared with the well-differentiated group. As a result of this pilot study, we confirm that the lower tumor uptake of 68Ga-DOTA-NOC may be associated with aggressive behavior and may, therefore, result in poor prognosis.
Many recent studies focused on the patient’s safety from the administration of gadolinium-based contrast agents (GBCAs), their concentration, the dose of administration and their effects on the image quality. The present study was aimed at evaluating the effects of reduced GBCAs (gadobutrol and gadoterate meglumine) volume on the image quality by using phantoms. Eight (8) human brain mimicking phantom made of nickel chloride (NiCl2) doped agarose gel were added with 0.00500 ml (100% volume), 0.00350 ml (75% volume), 0.00250 ml (50% volume) and 0.00125 ml (25% volume) of gadobutrol, 0.0100 ml (100% volume), 0.0075 ml (75% volume), 0.0050 ml (50% volume) and 0.0025 ml (25% volume) of gadoterate meglumine. The phantoms were scanned using a 1.5-T and a 3 T-MRI system. Signal-to-noise ratio (SNR) and the contrast agents enhancement were evaluated quantitatively and qualitatively. The 50% volume of gadobutrol and gadoterate meglumine at 3 T showed greater enhancement when compared with 50% and 100% volumes of gadobutrol and gadoterate meglumine at 1.5 T. It can be concluded that the volume of gadobutrol and gadoterate meglumine contrast agents can be reduced when using a higher field system