Displaying all 7 publications

Abstract:
Sort:
  1. Fan L, Wei Y, Chen Y, Jiang S, Xu F, Zhang C, et al.
    Food Chem, 2023 Mar 01;403:134419.
    PMID: 36191421 DOI: 10.1016/j.foodchem.2022.134419
    This study investigatedthe mechanism of epinecidin-1 against Botrytis cinerea, in vitro, and its effectiveness at inhibiting gray mold on postharvest peach fruit. We found that in vitro, epinecidin-1 had significantly greater antifungal activity against B. cinerea than either clavanin-A or mytimycin, two other marine derived antimicrobial peptides that we tested. Its antifungal activity was heat-resistant (15 min at 40-100 °C) and tolerant to lower concentrations of cations (<100 mM Na+, K+; <10 mM Ca2+). Epinecidin-1 interacted directly with B. cinerea genomic DNA, and that in mycelia, epinecidin-1 exposure induced accumulation of intracellular ROS and increased the permeability of cell membranes resulting in leakage of nucleic acids and aberrant cell morphology. Meanwhile, 200 μM of epinecidin-1 had a significant inhibitory effect on gray mold injected into peach fruit. These results suggested that epinecidin-1 showed promise as a potential method for controlling postharvest gray mold in peaches.
    Matched MeSH terms: Prunus persica*
  2. Lasekan O, Dabaj F
    Foods, 2020 Aug 17;9(8).
    PMID: 32824398 DOI: 10.3390/foods9081129
    The key aroma constituents in the volatile fractions isolated FROM two differently processed fry breads by solvent-assisted flavor evaporation were characterized by an aroma extract dilution analysis (AEDA). Twenty-two compounds were identified with flavor dilution (FD) factor ranges of 2-516. Among them, 13 compounds (FD ≥ 16) were quantified by stable isotope dilution assays and analyzed by odor activity values (OAVs). Of these, 11 compounds had OAVs ≥ 1, and the highest concentrations were determined for δ-decalactone and 2,3-butanedione. Two recombination models of the fry breads showed similarity to the corresponding fry breads. Omission tests confirmed that aroma-active constituents, such as δ-decalactone (oily/peach), 2-acetyl-1-pyrroline (roasty/popcorn-like), 3-methylbutanal (malty), methional (baked potato-like), 2,3-butanedione (buttery), phenyl acetaldehyde (flowery), (E,E)-2,4-decadienal (deep-fried), butanoic acid, and 3-methylbutanoic acid, were the key aroma constituents of fry bread. In addition, 3-methoxy-4-vinylphenol (smoky) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone were also identified as important aroma constituents of fry bread.
    Matched MeSH terms: Prunus persica
  3. Saad KA, Mohamad Roff MN, Hallett RH, Idris AB
    Sci Rep, 2015;5:13697.
    PMID: 26334135 DOI: 10.1038/srep13697
    The sweetpotato whitefly (WF), Bemisia tabaci, is a major pest that damages a wide range of vegetable crops in Malaysia. WF infestation is influenced by a variety of factors, including previous infestation of the host plant by other insect pests. This study investigated the effects of previous infestation of host chilli plants by the green peach aphid (Myzus persicae) on the olfactory behavioural response of B. tabaci, using free-choice bioassay with a Y-tube olfactometer. We analysed volatile organic compounds (VOCs) emitted by non-infested and M. persicae-infested chilli plants using solid-phase microextraction and gas chromatography-mass spectrometry. Our results showed that female WFs preferred non-infested to pre-infested plants. Collection and analysis of volatile compounds emitted by infested plants confirmed that there were significant increases in the production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene), and methyl salicylate (MeSA) compared to non-infested plants. Our results suggest that host plant infestation by aphids may induce production of secondary metabolites that deter B. tabaci from settling on its host plants. These results provide important information for understanding WF host selection and dispersal among crops, and also for manipulating WF behaviour to improve IPM in chilli.
    Matched MeSH terms: Prunus persica
  4. Gholami M, Behkami S, Zain SM, Bakirdere S
    Sci Rep, 2016 11 17;6:37186.
    PMID: 27853264 DOI: 10.1038/srep37186
    The objective of this work is to prepare a cost-effective, low reagent consumption and high performance polytetrafluoroethylene (PTFE) vessel that is capable to work in domestic microwave for digesting food and environmental samples. The designed vessel has a relatively thicker wall compared to that of commercial vessels. In this design, eight vessels are placed in an acrylonitrile butadiene styrene (ABS) holder to keep them safe and stable. This vessel needs only 2.0 mL of HNO3 and 1.0 mL H2O2 to digest 100 mg of biological sample. The performance of this design is then evaluated with an ICP-MS instrument in the analysis of the several NIST standard reference material of milk 1849a, rice flour 1568b, spinach leave 1570a and Peach Leaves 1547 in a domestic microwave oven with inverter technology. Outstanding agreement to (SRM) values are observed by using the suggested power to time microwave program, which simulates the reflux action occurring in this closed vessel. Taking into account the high cost of commercial microwave vessels and the volume of chemicals needed for various experiments (8-10 mL), this simple vessel is cost effective and suitable for digesting food and environmental samples.
    Matched MeSH terms: Prunus persica
  5. Nishijima KA, Follett PA, Bushe BC, Nagao MA
    Plant Dis, 2002 Jan;86(1):71.
    PMID: 30823004 DOI: 10.1094/PDIS.2002.86.1.71C
    Rambutan (Nephelium lappaceum L.) is a tropical fruit grown in Hawaii for the exotic fruit market. Fruit rot was observed periodically during 1998 and 1999 from two islands, Hawaii and Kauai, and severe fruit rot was observed during 2000 in orchards in Kurtistown and Papaikou on Hawaii. Symptoms were characterized by brown-to-black, water-soaked lesions on the fruit surface that progressed to blackening and drying of the pericarp, which often split and exposed the aril (flesh). In certain cultivars, immature, small green fruits were totally mummified. Rambutan trees with high incidence of fruit rot also showed symptoms of branch dieback and leaf spot. Lasmenia sp. Speg. sensu Sutton, identified by Centraalbureau voor Schimmelcultures (Baarn, the Netherlands), was isolated from infected fruit and necrotic leaves. Also associated with some of the fruit rot and dieback symptoms were Gliocephalotrichum simplex (J.A. Meyer) B. Wiley & E. Simmons, and G. bulbilium J.J. Ellis & Hesseltine. G. simplex was isolated from infected fruit, and G. bulbilium was isolated from discolored vascular tissues and infected fruit. Identification of species of Gliocephalotrichum was based on characteristics of conidiophores, sterile hairs, and chlamydospores (1,4). Culture characteristics were distinctive on potato dextrose agar (PDA), where the mycelium of G. bulbilium was light orange (peach) without reverse color, while G. simplex was golden-brown to grayish-yellow with dark brown reverse color. Both species produced a fruity odor after 6 days on PDA. In pathogenicity tests, healthy, washed rambutan fruits were wounded, inoculated with 30 μl of sterile distilled water (SDW) or a fungus spore suspension (105 to 106 spores per ml), and incubated in humidity chambers at room temperature (22°C) under continuous fluorescent light. Lasmenia sp. (strain KN-F99-1), G. simplex (strain KN-F2000-1), and G. bulbilium (strains KN-F2001-1 and KN-F2001-2) produced fruit rot symptoms on inoculated fruit and were reisolated from fruit with typical symptoms, fulfilling Koch's postulates. Controls (inoculated with SDW) had lower incidence or developed less severe symptoms than the fungus treatments. Inoculation tests were conducted at least twice. To our knowledge, this is the first report of Lasmenia sp. in Hawaii and the first report of the genus Gliocephalotrichum on rambutan in Hawaii. These pathogens are potentially economically important to rambutan in Hawaii. G. bulbilium has been reported previously on decaying wood of guava (Psidium guajava L.) in Hawaii (2), and the fungus causes field and postharvest rots of rambutan fruit in Thailand (3). References: (1) J. J. Ellis and C. W. Hesseltine. Bull. Torrey Bot. Club 89:21, 1962. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (3) N. Visarathanonth and L. L. Ilag. Pages 51-57 in: Rambutan: Fruit Development, Postharvest Physiology and Marketing in ASEAN. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia, 1987. (4) B. J. Wiley and E. G. Simmons. Mycologia 63:575, 1971.
    Matched MeSH terms: Prunus persica
  6. Lee SW, Chaiyakunapruk N, Lai NM
    Br J Clin Pharmacol, 2017 01;83(1):211-212.
    PMID: 27650490 DOI: 10.1111/bcp.13091
    Matched MeSH terms: Prunus persica/adverse effects
  7. Okuda S, Prince JP, Davis RE, Dally EL, Lee IM, Mogen B, et al.
    Plant Dis, 1997 Mar;81(3):301-305.
    PMID: 30861775 DOI: 10.1094/PDIS.1997.81.3.301
    Phytoplasmas (mycoplasmalike organisms, MLOs) associated with mitsuba (Japanese hone-wort) witches'-broom (JHW), garland chrysanthemum witches'-broom (GCW), eggplant dwarf (ED), tomato yellows (TY), marguerite yellows (MY), gentian witches'-broom (GW), and tsu-wabuki witches'-broom (TW) in Japan were investigated by polymerase chain reaction (PCR) amplification of DNA and restriction enzyme analysis of PCR products. The phytoplasmas could be separated into two groups, one containing strains JHW, GCW, ED, TY, and MY, and the other containing strains GW and TW, corresponding to two groups previously recognized on the basis of transmission by Macrosteles striifrons and Scleroracus flavopictus, respectively. The strains transmitted by M. striifrons were classified in 16S rRNA gene group 16SrI, which contains aster yellows and related phytoplasma strains. Strains GW and TW were classified in group 16SrIII, which contains phytoplasmas associated with peach X-disease, clover yellow edge, and related phytoplasmas. Digestion of amplified 16S rDNA with HpaII indicated that strains GW and TW were affiliated with subgroup 16SrIII-B, which contains clover yellow edge phytoplasma. All seven strains were distinguished from other phytoplasmas, including those associated with clover proliferation, ash yellows, elm yellows, and beet leafhopper-transmitted virescence in North America, and Malaysian periwinkle yellows and sweet potato witches'-broom in Asia.
    Matched MeSH terms: Prunus persica
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links