METHODS AND MATERIALS: This retrospective study used data from 5 consecutive patients with NPC who were treated with bolus for large neck nodes using IMRT from November 2011-January 2012 in our institute. All these patients were treated radically with IMRT according to our institution's protocol. Re-planning with IMRT without bolus for these patients with exactly the same target volumes were done for comparison. Comparison of the plans was done by comparing the V70 of PTV70-N, V66.5 of PTV70-N, V65.1 of PTV70-N and the surface dose of the PTV70-N.
RESULTS: The mean size of the largest diameter of the enlarged lymph nodes for the 5 patients was 3.9 cm. The mean distance of the GTV-N to the skin surface was 0.6 cm. The mean V70 of PTV70-N for the 5 patients showed an absolute advantage of 10.8% (92.4% vs. 81.6%) for the plan with bolus while the V66.5 of PTV70-N had an advantage of 8.1% (97.0% vs. 88.9%). The mean V65.1 also had an advantage of 7.1% (97.6% vs. 90.5%). The mean surface dose for the PTV70-N was also much higher at 61.1 Gy for the plans with bolus compared to only 23.5 Gy for the plans without bolus.
CONCLUSION: Neck node bolus technique should be strongly considered in the treatment of NPC with enlarged lymph nodes treated with IMRT. It yields a superior dosimetry compared to non-bolus plans with acceptable skin toxicity.
METHODS: 52 prostate cancer patients who had completed radiotherapy were selected and randomly divided into 2 groups with 40 and 12 separately. Then both VMAT and IMRT plans were manually designed for all patients. The total plans in the group with 40 cases as training datasets were added to the knowledge-based planning (KBP) models for learning and finally obtained VMAT and IMRT training models. Another 12 cases were selected as the validation group to be used to generated auto IMRT plans by KBP VMAT and IMRT models. At last, the radiotherapy plans from three groups were obtained: the automated IMRT plan (V-IMRT) predicted by the VMAT model, the automated IMRT plan (I-IMRT) predicted by the IMRT model and the manual IMRT plan (M-IMRT) designed before. The dosimetric parameters of planning target volume (PTV) and organ at risks (OARs) as well as the time parameters (monitor unit, MU) were statistically analyzed.
RESULTS: The dose limit of all plans in the training datasets met the clinical requirements. Compared with the training plans added to VMAT model, the dosimetry parameters have no statistical differences in PTV (P > 0.05); the dose of X% volume (Dx%) with D25% and D35% in rectal and the maximum dose (Dmax) in the right femoral head were lower (P = 0.04, P = 0.01, P = 0.00) while D50% in rectal was higher ( 0.05), but the Dmax in left femoral heard and D15% in the right femoral head were lower and have significant differences (P 0.05).
CONCLUSION: Compared with the manual plan, the IMRT plans generated by the KBP models had a significant advantage in dose control of both OARs and PTV. Compared to the I-IMRT plans, the V-IMRT plans was not only without significant disadvantages, but it also achieved slightly better control of the low-dose region, which meet the clinical requirements and can used in the clinical treatment. This study demonstrates that it is feasible to transfer the KBP VMAT model in the prediction of IMRT plans.
MATERIALS AND METHODS: Data from 10 consecutive patients treated with IMRT from June-October 2011 in Penang General Hospital were collected retrospectively for analysis. For each patient, dose volume histograms were generated for both the IMRT and 3DCRT plans using a total dose of 70Gy. Comparison of the plans was accomplished by comparing the target volume coverage (5 measures) and sparing of organs at risk (17 organs) for each patient using both IMRT and 3DCRT. The means of each comparison target volume coverage measures and organs at risk measures were obtained and tested for statistical significance using the paired Student t-test.
RESULTS: All 5 measures for target volume coverage showed marked dosimetric superiority of IMRT over 3DCRT. V70 and V66.5 for PTV70 showed an absolute improvement of 39.3% and 24.1% respectively. V59.4 and V56.4 for PTV59.4 showed advantages of 18.4% and 16.4%. Moreover, the mean PTV70 dose revealed a 5.1 Gy higher dose with IMRT. Only 4 out of 17 organs at risk showed statistically significant difference in their means which were clinically meaningful between the IMRT and 3DCRT techniques. IMRT was superior in sparing the spinal cord (less 5.8Gy), V30 of right parotid (less 14.3%) and V30 of the left parotid (less 13.1%). The V55 of the left cochlea was lower with 3DCRT (less 44.3%).
CONCLUSIONS: IMRT is superior to 3DCRT due to its dosimetric advantage in target volume coverage while delivering acceptable doses to organs at risk. A total dose of 70Gy with IMRT should be considered as a standard of care for radical treatment of NPC.
METHODS: PubMed and Scopus electronic databases were searched based on the guidelines established by PRISMA to obtain studies investigating the integration of DTI in intracranial RT/RS treatment planning. References and citations from Google Scholar were also extracted. Eligible studies were extracted for information on changes in dose distribution, treatment parameters, and outcome after DTI integration.
RESULTS: Eighteen studies were selected for inclusion with 406 patients (median study size, 19; range: 2-144). Dose distribution, with or without DTI integration, described changes of treatment parameters, and the reported outcome of treatment were compared in 12, 7, and 10 studies, respectively. Dose distributions after DTI integration improved in all studies. Delivery time or monitor unit was higher after integration. In studies with long-term follow-up (median, >12 months), neurologic deficits were significantly fewer in patients with DTI integration.
CONCLUSIONS: Integrating DTI into RT/RS treatment planning improved dose distribution, with higher treatment delivery time or monitor unit as a potential drawback. Fewer neurologic deficits were found with DTI integration.