DESIGN: Harmonized data from prospective multicenter international longitudinal cohort studies SETTING:: Diverse mix of ICUs.
PATIENTS: Critically ill patients expected to be ventilated for longer than 24 hours.
INTERVENTIONS: Richmond Agitation Sedation Scale and pain were assessed every 4 hours. Delirium and mobilization were assessed daily using the Confusion Assessment Method of ICU and a standardized mobility assessment, respectively.
MEASUREMENTS AND MAIN RESULTS: Sedation intensity was assessed using a Sedation Index, calculated as the sum of negative Richmond Agitation Sedation Scale measurements divided by the total number of assessments. We used multivariable Cox proportional hazard models to adjust for relevant covariates. We performed subgroup and sensitivity analysis accounting for immortal time bias using the same variables within 120 and 168 hours. The main outcome was 180-day survival. We assessed 703 patients in 42 ICUs with a mean (SD) Acute Physiology and Chronic Health Evaluation II score of 22.2 (8.5) with 180-day mortality of 32.3% (227). The median (interquartile range) ventilation time was 4.54 days (2.47-8.43 d). Delirium occurred in 273 (38.8%) of patients. Sedation intensity, in an escalating dose-dependent relationship, independently predicted increased risk of death (hazard ratio [95% CI], 1.29 [1.15-1.46]; p < 0.001, delirium hazard ratio [95% CI], 1.25 [1.10-1.43]), p value equals to 0.001 and reduced chance of early extubation hazard ratio (95% CI) 0.80 (0.73-0.87), p value of less than 0.001. Agitation level independently predicted subsequent delirium hazard ratio [95% CI], of 1.25 (1.04-1.49), p value equals to 0.02. Delirium or mobilization episodes within 168 hours, adjusted for sedation intensity, were not associated with survival.
CONCLUSIONS: Sedation intensity independently, in an ascending relationship, predicted increased risk of death, delirium, and delayed time to extubation. These observations suggest that keeping sedation level equivalent to a Richmond Agitation Sedation Scale 0 is a clinically desirable goal.
DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.
CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.
METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2
METHODS: Patients with PARDS from 10 paediatric intensive care units across Asia from 2009 to 2015 were identified. Data on epidemiology and clinical outcomes were collected. Patients on HFOV were compared to patients on other modes of ventilation. The primary outcome was 28-day mortality and secondary outcomes were 28-day ventilator- (VFD) and intensive care unit- (IFD) free days. Genetic matching (GM) method was used to analyse the association between HFOV treatment with the primary outcome. Additionally, we performed a sensitivity analysis, including propensity score (PS) matching, inverse probability of treatment weighting (IPTW) and marginal structural modelling (MSM) to estimate the treatment effect.
RESULTS: A total of 328 patients were included. In the first 7 days of PARDS, 122/328 (37.2%) patients were supported with HFOV. There were significant differences in baseline oxygenation index (OI) between the HFOV and non-HFOV groups (18.8 [12.0, 30.2] vs. 7.7 [5.1, 13.1] respectively; p