Displaying all 15 publications

Abstract:
Sort:
  1. Oskoueian E, Abdullah N, Oskoueian A
    Biomed Res Int, 2013;2013:349129.
    PMID: 24175289 DOI: 10.1155/2013/349129
    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β -glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.
    Matched MeSH terms: Rumen/metabolism
  2. Lajis NH, Abdullah AS, Salim SJ, Bremner JB, Khan MN
    Steroids, 1993 Aug;58(8):387-9.
    PMID: 8212090
    Spectroscopic examination of purified extracts of the rumen content of sheep intoxicated by Brachiaria decumbens revealed the presence of two spirostanes, identified as epi-sarsasapogenin and epi-smilagenin. Sarsasapogenone was obtained by the oxidation of sarsasapogenin. The reduction of sarsasapogenone using lithium aluminum hydride yielded isomeric products, sarsasapogenin (20%) and epi-sarsasapogenin (80%).
    Matched MeSH terms: Rumen/metabolism
  3. Abdullah AS, Nordin MM, Rajion MA
    Vet Hum Toxicol, 1988 Jun;30(3):256-8.
    PMID: 3388753
    In addition to generalized icterus, enlargement of the liver and severe photosensitization, signal grass (Brachiaria decumbens) toxicity also caused ruminal stasis and a decreased rumen pH in sheep. Ruminal stasis, which occurred within 3 weeks of grazing on this grass, may be the effect of the toxin produced in the rumen rather than a sequele of a decreased rumen pH. Animals were anorexic and the volume of their rumen content was very much reduced.
    Matched MeSH terms: Rumen/metabolism
  4. Noordin MM, Salam Abdullah A, Rajion MA
    Vet Res Commun, 1989;13(6):491-4.
    PMID: 2631385
    Although Brachiaria decumbens was not toxic when fed to cattle, the infusion of rumen liquor from B. decumbens intoxicated sheep into the rumen of cattle produced evidence suggesting hepatic and renal dysfunction. Several biochemical changes were observed including increases in serum aspartate amino transferase, serum creatinine and blood urea nitrogen and a marked reduction in the plasma bromosulphthalein clearance.
    Matched MeSH terms: Rumen/metabolism
  5. Tan ETT, Al Jassim R, D'Arcy BR, Fletcher MT
    J Agric Food Chem, 2017 Aug 30;65(34):7528-7534.
    PMID: 28787565 DOI: 10.1021/acs.jafc.7b02492
    The known accumulation of the hepatotoxin indospicine in tissues of camels and cattle grazing Indigofera pasture plants is unusual in that free amino acids would normally be expected to be degraded during the fermentation processes in these foregut fermenters. In this study, in vitro experiments were carried out to examine the degradability of indospicine of Indigofera spicata by camel and cattle foregut microbiota. In the first experiment, a 48 h in vitro incubation was carried out using foregut fluid samples that were collected from 15 feral camels and also a fistulated cow. Degradability of indospicine ranged between 97% and 99%, with the higher value of 99% for camels. A pooled sample of foregut fluids from three camels that were on a roughage diet was used in a second experiment to examine the time-dependent degradation of indospicine present in the plant materials. Results indicated that camels' foregut fluids have the ability to biodegrade ∼99% of the indospicine in I. spicata within 48 h of incubation and produced 2-aminopimelamic acid and 2-aminopimelic acid. The time-dependent degradation analysis showed rapid indospicine degradation (65 nmol/h) during the first 8-18 h of incubation followed by a slower degradation rate (12 nmol/h) between 18 and 48 h. Indospicine degradation products were also degraded toward the end of the experiment. The results of these in vitro degradation studies suggest that dietary indospicine may undergo extensive degradation in the foregut of the camel, resulting in trace levels after 48 h. The retention time for plant material in the camel foregut varies depending on feed quality, and the results of this study together with the observed accumulation of indospicine in camel tissues suggest that, although indospicine can be degraded by foregut fermentation, this degradation is not complete before the passage of the digesta into the intestine.
    Matched MeSH terms: Rumen/metabolism
  6. Mohd Azlan P, Jahromi MF, Ariff MO, Ebrahimi M, Candyrine SCL, Liang JB
    Trop Anim Health Prod, 2018 Mar;50(3):565-571.
    PMID: 29150805 DOI: 10.1007/s11250-017-1470-x
    The objectives of this study were to test the efficacy of producing lovastatin in rice straw treated with Aspergillus terreus in larger laboratory scale following the procedure previously reported and to investigate the effectiveness of the treated rice straw containing lovastatin on methane mitigation in goats. The concentration of lovastatin in the treated rice straw was 0.69 ± 0.05 g/kg dry matter (DM) rice straw. Our results showed that supplementation of lovastatin at 4.14 mg/kg BW reduced methane production by 32% while improving the DM digestibility by 13% (P rumen methanogens as previously reported. This study provides a simple yet practical approach to mitigate enteric methane production particularly in the developing countries which depend heavily on the use of agro-biomass such as rice straw to feed their ruminant animals.
    Matched MeSH terms: Rumen/metabolism*
  7. Yusuf AL, Adeyemi KD, Samsudin AA, Goh YM, Alimon AR, Sazili AQ
    BMC Vet Res, 2017 Nov 24;13(1):349.
    PMID: 29178910 DOI: 10.1186/s12917-017-1223-0
    BACKGROUND: The nature and amount of dietary medicinal plants are known to influence rumen fermentation and nutrient digestibility in ruminants. Nonetheless, changes in nutrient digestibility and rumen metabolism in response to dietary Andrographis paniculata (AP) in goats are unknown. This study examined the effects of dietary supplementation of leaves and whole plant of AP on nutrient digestibility, rumen fermentation, fatty acids and rumen microbial population in goats. Twenty-four Boer crossbred bucks (4 months old; average body weight of 20.18 ± 0.19 kg) were randomly assigned to three dietary groups of eight goats each. The dietary treatments included a control diet (Basal diet without additive), basal diet +1.5% (w/w) Andrographis paniculata leaf powder (APL) and basal diet +1.5% (w/w) Andrographis paniculata whole plant powder (APW). The trial lasted 100 d following 14 d of adjustment.

    RESULTS: The rumen pH and concentration of propionate were greater (P rumen of goats. The ruminal populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes were greater (P rumen metabolism for improved nutrient digestibility in goats.

    Matched MeSH terms: Rumen/metabolism*
  8. Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, et al.
    BMC Vet Res, 2018 Nov 14;14(1):344.
    PMID: 30558590 DOI: 10.1186/s12917-018-1672-0
    BACKGROUND: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination.

    RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group.

    CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.

    Matched MeSH terms: Rumen/metabolism
  9. Zailan MZ, Salleh SM, Abdullah S, Yaakub H
    Trop Anim Health Prod, 2023 Nov 10;55(6):402.
    PMID: 37950132 DOI: 10.1007/s11250-023-03817-8
    This study aimed to evaluate the effect of feeding P. pulmonarius-treated empty fruit bunch (FTEFB) on the nutrient intakes, digestibility, milk yield and milk profiles of lactating Saanen goats. A total of nine lactating Saanen goats were used in an incomplete cross-over experimental design. The balanced dietary treatments contain different replacement levels of Napier grass with FTEFB at 0% (0-FT), 25% (25-FT) and 50% (50-FT). The FTEFB contained crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) at 4.10, 94.6, 70.8 and 19.4% DM, respectively. The replacement of FTEFB in 25-FT did not alter dry matter, NDF, hemicellulose, ADL, ether extract and gross energy intakes when compared to the control fed group (0-FT). The ADF and cellulose intake was higher in 25-FT than in the others (P  0.05). There are no differences in milk fatty profiles between dietary treatments (P > 0.05), except for OCFA. Goat fed with 25-FT had the lowest OCFA (P 
    Matched MeSH terms: Rumen/metabolism
  10. Saminathan M, Sieo CC, Abdullah N, Wong CM, Ho YW
    J Sci Food Agric, 2015 Oct;95(13):2742-9.
    PMID: 25418980 DOI: 10.1002/jsfa.7016
    Molecular weights (MWs) and their chemical structures are the primary factors determining the influence of condensed tannins (CTs) on animal nutrition and methane (CH4 ) production in ruminants. In this study the MWs of five CT fractions from Leucaena leucocephala hybrid-Rendang (LLR) were determined and the CT fractions were investigated for their effects on CH4 production and rumen fermentation.
    Matched MeSH terms: Rumen/metabolism*
  11. Jafari S, Goh YM, Rajion MA, Jahromi MF, Ahmad YH, Ebrahimi M
    Anim Sci J, 2017 Feb;88(2):267-276.
    PMID: 27345820 DOI: 10.1111/asj.12634
    Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH4 ) production (mL/250 mg DM) decreased (P rumenic acid; RA) and t10c12 CLA. Real-time PCR analysis indicated that the total bacteria, total protozoa, Butyrivibrio fibrisolvens and methanogen population in HLE decreased (P <0.05) compared to CON, but the total bacteria and B. fibrisolvens population were higher (P 
    Matched MeSH terms: Rumen/metabolism*
  12. Gong YL, Liang JB, Jahromi MF, Wu YB, Wright AG, Liao XD
    Animal, 2018 Feb;12(2):239-245.
    PMID: 28735588 DOI: 10.1017/S1751731117001732
    The objectives of this study were to determine the effect and mode of action of Saccharomyces cerevisiae (YST2) on enteric methane (CH4) mitigation in pigs. A total of 12 Duroc×Landrace×Yorkshire male finisher pigs (60±1 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups: a basal diet (control); and a basal diet supplemented with 3 g/YST2 (1.8×1010 live cells/g) per kg diet. At the end of 32-day experiment, pigs were sacrificed and redox potential (Eh), pH, volatile fatty acid concentration, densities of methanogens and acetogens, and expression of methyl coenzyme-M reductase subunit A gene were determined in digesta contents from the cecum, colon and rectum. Results showed that S. cerevisiae YST2 decreased (P<0.05) the average daily enteric CH4 production by 25.3%, lowered the pH value from 6.99 to 6.69 in the rectum, and increased the Eh value in cecum and colon by up to -55 mV (P<0.05). Fermentation patterns were also altered by supplementation of YST2 as reflected by the lower acetate, and higher propionate molar proportion in the cecum and colon (P<0.05), resulting in lower acetate : propionate ratio (P<0.05). Moreover, there was a 61% decrease in Methanobrevibacter species in the upper colon (P<0.05) and a 19% increase in the acetogen community in the cecum (P<0.05) of treated pigs. Results of our study concluded that supplementation of S. cerevisiae YST2 at 3 g/kg substantially decreased enteric CH4 production in pigs.
    Matched MeSH terms: Rumen/metabolism
  13. Saeed OA, Sazili AQ, Akit H, Alimon AR, Samsudin AAB
    Trop Anim Health Prod, 2018 Dec;50(8):1859-1864.
    PMID: 29948778 DOI: 10.1007/s11250-018-1636-1
    This study investigated the effect of different levels of corn supplementation as energy source into palm kernel cake-urea-treated rice straw basal diet on urinary excretion of purine derivatives, nitrogen utilization, rumen fermentation, and rumen microorganism populations. Twenty-seven Dorper lambs were randomly assigned to three treatment groups and kept in individual pens for a 120-day period. The animals were subjected to the dietary treatments as follows: T1: 75.3% PKC + 0% corn, T2: 70.3% PKC + 5% corn, and T3: 65.3% PKC + 10% corn. Hypoxanthine and uric acid excretion level were recorded similarly in lambs supplemented with corn. The microbial N yield and butyrate level was higher in corn-supplemented group, but fecal N excretion, T3 has the lowest level than other groups. Lambs fed T3 had a greater rumen protozoa population while the number of R. flavefaciens was recorded highest in T2. No significant differences were observed for total bacteria, F. succinogenes, R. albus, and methanogen population among all treatment. Based on these results, T3 could be fed to lambs without deleterious effect on the VFA and N balance.
    Matched MeSH terms: Rumen/metabolism*
  14. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM
    Sci Rep, 2019 Jul 09;9(1):9938.
    PMID: 31289291 DOI: 10.1038/s41598-019-46076-0
    We investigate the effects of postbiotic Lactobacillus plantarum RG14 on gastrointestinal histology, haematology, mucosal IgA concentration, microbial population and mRNA expression related to intestinal mucosal immunity and barrier function. Twelve newly weaned lambs were randomly allocated to two treatment groups; the control group without postbiotic supplementation and postbiotic group with supplementation of 0.9% postbiotic in the diet over a 60-day trial. The improvement of rumen papillae height and width were observed in lambs fed with postbiotics. In contrast, no difference was shown in villi height of duodenum, jejunum and ileum between the two groups. Lambs received postbiotics had a lower concentration of IgA in jejunum but no difference in IgA concentration in serum and mucosal of the rumen, duodenum and ileum. In respect of haematology, postbiotics lowered leukocyte, lymphocyte, basophil, neutrophil and platelets, no significant differences in eosinophil. The increase in of IL-6 mRNA and decrease of IL-1β, IL-10, TNF mRNA were observed in the jejunum of lambs receiving postbiotics. Postbiotics also improved the integrity of the intestinal barrier by the upregulation of TJP-1, CLDN-1 and CLDN-4 mRNA. Postbiotic supplementation derived from L. plantarum RG14 in post-weaning lambs enhance the ruminal papillae growth, immune status and gastrointestinal health.
    Matched MeSH terms: Rumen/metabolism
  15. Odhaib KJ, Adeyemi KD, Ahmed MA, Jahromi MF, Jusoh S, Samsudin AA, et al.
    Trop Anim Health Prod, 2018 Jun;50(5):1011-1023.
    PMID: 29654500 DOI: 10.1007/s11250-018-1525-7
    The objective of this study was to determine the effects of dietary supplementation of Nigella sativa L. seeds, Rosmarinus officinalis L. leaves and their combination on rumen metabolism, nutrient intake and digestibility, growth performance, immune response and blood metabolites in Dorper lambs. Twenty-four entire male Dorper lambs (18.68 ± 0.6 kg, 4-5 months old) were randomly assigned to a concentrate mixture containing on a dry matter basis either, no supplement (control, T1), 1% R. officinalis leaves (T2), 1% N. sativa seeds (T3) or 1% R. officinalis leaves +1% N. sativa seeds (T4). The lambs had ad libitum access to urea-treated rice straw (UTRS) and were raised for 90 days. Supplemented lambs had greater (P 
    Matched MeSH terms: Rumen/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links