Displaying all 9 publications

Abstract:
Sort:
  1. Ho YK, Doshi P, Yeoh HK, Ngoh GC
    Biotechnol Bioeng, 2015 Oct;112(10):2084-105.
    PMID: 25899009 DOI: 10.1002/bit.25616
    Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development*
  2. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park YC, et al.
    Bioprocess Biosyst Eng, 2012 Nov;35(9):1497-503.
    PMID: 22644062 DOI: 10.1007/s00449-012-0739-8
    Oil palm fronds are the most abundant lignocellulosic biomass in Malaysia. In this study, fronds were tested as the potential renewable biomass for ethanol production. The soaking in aqueous ammonia pretreatment was applied, and the fermentability of pretreated fronds was evaluated using simultaneous saccharification and fermentation. The optimal pretreatment conditions were 7 % (w/w) ammonia, 80 °C, 20 h of pretreatment, and 1:12 S/L ratio, where the enzymatic digestibility was 41.4 % with cellulase of 60 FPU/g-glucan. When increasing the cellulase loading in the hydrolysis of pretreated fronds, the enzymatic digestibility increased until the enzyme loading reached 60 FPU/g-glucan. With 3 % glucan loading in the SSF of pretreated fronds, the ethanol concentration and yield based on the theoretical maximum after 12 and 48 h of the SSF were 7.5 and 9.7 g/L and 43.8 and 56.8 %, respectively. The ethanol productivities found at 12 and 24 h from pretreated fronds were 0.62 and 0.36 g/L/h, respectively.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development*
  3. Kwong MMY, Lee JW, Samian MR, Watanabe N, Osada H, Ong EBB
    J Microbiol Methods, 2019 12;167:105743.
    PMID: 31629019 DOI: 10.1016/j.mimet.2019.105743
    This study compared the chronological life span and survival of Saccharomyces cerevisiae aged in a microplate or bottle, under different aeration and calorie restriction conditions. Our data shows that limited aeration in the microplate-aged culture contributed to slower outgrowth but extended yeast CLS compared to the bottle-aged culture.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development*
  4. Arifin AA, Don MM, Uzir MH
    Bioresour Technol, 2011 Oct;102(19):9318-20.
    PMID: 21835610 DOI: 10.1016/j.biortech.2011.07.053
    The present work aims to address the gas-phase biotransformation of geraniol into citronellol using growing cells of Saccharomyces cerevisiae (baker's yeast) in a continuous-closed-gas-loop bioreactor (CCGLB). This study revealed that the gaseous geraniol had a severe effect on the production of biomass during the growing cell biotransformation resulting in the decrease in the specific growth rate from 0.07 to 0.05 h⁻¹. The rate of reaction of the growing cell biotransformation was strongly affected by agitation and substrate flow rates. The highest citronellol concentration of 1.18 g/L and initial rate of reaction of 7.06 × 10⁻⁴ g/min g(cell) were obtained at 500 rpm and 8 L/min, respectively.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development*
  5. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development
  6. Islahudin F, Tindall SM, Mellor IR, Swift K, Christensen HE, Fone KC, et al.
    Sci Rep, 2014 Jan 09;4:3618.
    PMID: 24402577 DOI: 10.1038/srep03618
    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development
  7. Sheikh-Ali SI, Ahmad A, Mohd-Setapar SH, Zakaria ZA, Abdul-Talib N, Khamis AK, et al.
    J Microbiol, 2014 Oct;52(10):807-18.
    PMID: 25269603 DOI: 10.1007/s12275-014-4294-7
    The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development
  8. Gong YL, Liang JB, Jahromi MF, Wu YB, Wright AG, Liao XD
    Animal, 2018 Feb;12(2):239-245.
    PMID: 28735588 DOI: 10.1017/S1751731117001732
    The objectives of this study were to determine the effect and mode of action of Saccharomyces cerevisiae (YST2) on enteric methane (CH4) mitigation in pigs. A total of 12 Duroc×Landrace×Yorkshire male finisher pigs (60±1 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups: a basal diet (control); and a basal diet supplemented with 3 g/YST2 (1.8×1010 live cells/g) per kg diet. At the end of 32-day experiment, pigs were sacrificed and redox potential (Eh), pH, volatile fatty acid concentration, densities of methanogens and acetogens, and expression of methyl coenzyme-M reductase subunit A gene were determined in digesta contents from the cecum, colon and rectum. Results showed that S. cerevisiae YST2 decreased (P<0.05) the average daily enteric CH4 production by 25.3%, lowered the pH value from 6.99 to 6.69 in the rectum, and increased the Eh value in cecum and colon by up to -55 mV (P<0.05). Fermentation patterns were also altered by supplementation of YST2 as reflected by the lower acetate, and higher propionate molar proportion in the cecum and colon (P<0.05), resulting in lower acetate : propionate ratio (P<0.05). Moreover, there was a 61% decrease in Methanobrevibacter species in the upper colon (P<0.05) and a 19% increase in the acetogen community in the cecum (P<0.05) of treated pigs. Results of our study concluded that supplementation of S. cerevisiae YST2 at 3 g/kg substantially decreased enteric CH4 production in pigs.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development
  9. Lee HN, Mostovoy Y, Hsu TY, Chang AH, Brem RB
    G3 (Bethesda), 2013 Dec 09;3(12):2187-94.
    PMID: 24142925 DOI: 10.1534/g3.113.008011
    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.
    Matched MeSH terms: Saccharomyces cerevisiae/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links