Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Dutta S, Henkel R, Agarwal A
    Andrologia, 2021 Mar;53(2):e13718.
    PMID: 32628294 DOI: 10.1111/and.13718
    Male infertility has a complex etiology, and many times, the cause is unknown. While routine semen analysis provides an overview of basic semen parameters, such as sperm concentration, motility, viability and morphology, a significant overlap of these parameters has been reported in fertile and infertile men. Moreover, conventional semen parameters do not reveal the cellular or molecular mechanisms of sperm dysfunctions leading to infertility. Therefore, sperm functional parameters, including sperm chromatin integrity, are evaluated to provide information on subtle sperm defects that are not routinely identified. Incomplete or defective sperm chromatin condensation increases the susceptibility of the sperm DNA to oxidative damage or other factors. To evaluate sperm chromatin integrity, different methods with varying degrees of diagnostic and prognostic capabilities are available. Among these assays, SCSA, TUNEL and SCD assays are most commonly used. While these assays rather evaluate the DNA directly for damages, the aniline blue and chromomycin A3 stains test for the quality of chromatin condensation. Thus, this review discusses and compares different methods used to evaluate sperm chromatin integrity and condensation, and their inclusion in the routine evaluation of the male infertility.
    Matched MeSH terms: Semen Analysis
  2. Choudhury BP, Roychoudhury S, Sengupta P, Toman R, Dutta S, Kesari KK
    Adv Exp Med Biol, 2022;1391:83-95.
    PMID: 36472818 DOI: 10.1007/978-3-031-12966-7_6
    Arsenic (As) is one of the most potent natural as well as anthropogenic metalloid toxicants that have various implications in the everyday life of humans. It is found in several chemical forms such as inorganic salt, organic salt, and arsine (gaseous form). Although it is mostly released via natural causes, there are many ways through which humans come in contact with As. Drinking water contamination by As is one of the major health concerns in various parts of the world. Arsenic exposure has the ability to induce adverse health effects including reproductive problems. Globally, around 15% of the couples are affected with infertility, of which about 20-30% are attributed to the male factor. Arsenic affects the normal development and function of sperm cells, tissue organization of the gonads, and also the sex hormone parameters. Stress induction is one of the implications of As exposure. Excessive stress leads to the release of glucocorticoids, which impact the oxidative balance in the body leading to overproduction of reactive oxygen species (ROS). This may in turn result in oxidative stress (OS) ultimately interfering with normal sperm and hormonal parameters. This study deals with As-induced OS and its association with sex hormone disruption as well as its effect on sperm and semen quality.
    Matched MeSH terms: Semen Analysis
  3. Sengupta P, Dutta S, Krajewska-Kulak E
    Am J Mens Health, 2017 07;11(4):1279-1304.
    PMID: 27099345 DOI: 10.1177/1557988316643383
    Reports regarding the changes in sperm concentration in different counties of the world are inconsistent. Furthermore, the reports that sprung up from specific epidemiological and experimental examinations did not include data of prior studies or geographical variations. The current study, following a previous report of massive fall in semen volume over the past 33 years, attempts to delineate the trend of altering sperm concentrations and factors responsible for this by reviewing article published from 1980 to July 2015 with geographic differences. The current study identified an overall 57% diminution in mean sperm concentration over the past 35 years ( r = -.313, p = .0002), which, when analyzed for each geographical region, identified a significant decline in North America, Europe, Asia, and Africa. An increasing trend of sperm concentration was identified only in Australia. The association of male age with such a trend ( R2 = .979) is reported. The authors also correlated male fertility with sperm concentration. Thus, this comprehensive, evidence-based literature review aims to concisely and systematically present the available data on sperm concentration from 1980 to 2015, as well as to statistically analyze the same and correlate male health with the declining pattern of sperm count in a single scientific review to serve the scientific research zone related to reproductive health. It points to the threat of male infertility in times ahead.
    Matched MeSH terms: Semen Analysis
  4. Leisegang K, Sengupta P, Agarwal A, Henkel R
    Andrologia, 2021 Feb;53(1):e13617.
    PMID: 32399992 DOI: 10.1111/and.13617
    Obesity is considered a global health problem affecting more than a third of the population. Complications of obesity include cardiovascular diseases, type 2 diabetes mellitus, malignancy (including prostatic cancer), neurodegeneration and accelerated ageing. In males, these further include erectile dysfunction, poor semen quality and subclinical prostatitis. Although poorly understood, important mediators of obesity that may influence the male reproductive system include hyperinsulinemia, hyperleptinemia, chronic inflammation and oxidative stress. Obesity is known to disrupt male fertility and the reproduction potential, particularly through alteration in the hypothalamic-pituitary-gonadal axis, disruption of testicular steroidogenesis and metabolic dysregulation, including insulin, cytokines and adipokines. Importantly, obesity and its underlying mediators result in a negative impact on semen parameters, including sperm concentration, motility, viability and normal morphology. Moreover, obesity inhibits chromatin condensation, DNA fragmentation, increases apoptosis and epigenetic changes that can be transferred to the offspring. This review discusses the impact of obesity on the male reproductive system and fertility, including associated mechanisms. Furthermore, weight management strategies, lifestyle changes, prescription medication, and complementary and alternative medicine in the management of obesity-induced subfertility is discussed.
    Matched MeSH terms: Semen Analysis
  5. Nikbin S, Panandam JM, Yaakub H, Murugaiyah M, Sazili AQ
    Anim. Reprod. Sci., 2014 May;146(3-4):176-81.
    PMID: 24674824 DOI: 10.1016/j.anireprosci.2014.03.001
    The semen quality of bucks affects the reproduction performance of the herd and is influenced by genetic and non-genetic factors. Heat shock protein 70 (HSP70) is considered as an important gene affecting semen quality traits. The objectives of this study are to find single nucleotide polymorphisms in HSP70 coding region and their association with semen quality traits on Boer and Boer cross bucks. DNA isolated from 53 goats (36 pure South African Boer and 17 Boer crosses) was subjected to PCR amplification of the exon 1 region of the caprine HSP70 gene. Single-strand conformation polymorphism (SSCP) was used to detect polymorphisms and the variant DNA fragments were sequenced. Two synonymous SNPs (74A>C (ss836187517) and 191C>G (ss836187518)) were detected. Qualities of fresh and post-thaw semen were evaluated for sperm concentration, semen volume, sperm motility and velocity traits, live sperm percentage, and abnormal sperm rate. The C allele of ss836187517 and G allele of ss836187518 were at higher frequencies in both the breeds. The C allele of ss836187517 appeared to be the favorable allele for semen concentration, progressive motility of fresh semen, and motility and sperm lateral head displacement of post-thaw semen. A negative overdominance was observed for ss836187517 alleles on velocity traits of post-thaw semen. The C allele of ss836187518 was favorable for sperm concentration and progressive motility. Results herein suggest that the SNPs in HSP70 may affect on semen quality in tropical regions and specially on the potential of semen for freezing.
    Matched MeSH terms: Semen Analysis/veterinary*
  6. Sarsaifi K, Rosnina Y, Ariff MO, Wahid H, Hani H, Yimer N, et al.
    Reprod. Domest. Anim., 2013 Dec;48(6):1006-12.
    PMID: 23808560 DOI: 10.1111/rda.12206
    This study was conducted to evaluate the response of Bali bulls (Bos javanicus) to different semen collection methods and their effects on fresh and post-thawed semen quality. The collection methods employed were electro-ejaculation (EE), transrectal massage (RM) and RM followed by EE (RM + EE). A total of 25 untrained Bali bulls (age between 2 and 4 years old) were subjected to the different semen collection methods. Fresh semen samples from all the 25 bulls were evaluated for volume, pH, general motility, live/dead ratio and abnormality using the conventional method. For fresh and frozen samples collected by EE and RM from 10 bulls, computer-assisted semen analysis system was used for precise quantitative measurement of motility, velocity and forward progression. Accucell photometer was used to measure sperm concentration in all samples, regardless fresh and frozen. Semen samples were obtained 100% of the attempts using EE, 84% using RM and 96% using RM + EE. There were no differences among the collection methods for fresh semen quality characteristics, including motility, morphology and viability, but pH and volume were higher for EE than RM and RM + EE. Higher sperm concentration was observed in semen collected by RM than the other two methods. Different age groups (2-3 and >3-4 years old) of the bulls did not show significant differences in volume, pH, sperm concentration, percentages in motility, live/dead ratio and normal sperm morphology. The quality of semen for general and progressive motility, VAP, VSL and VCL and acrosomal integrity after thawing was higher for RM than EE. In conclusion, Bali bulls appeared to respond best to EE and the combination of RM + EE than RM, as a method of semen collection, with a shorter time of stimulation required. Differences in age of the Bali bulls did not affect the semen quality.
    Matched MeSH terms: Semen Analysis/veterinary*
  7. Alahmar AT, Sengupta P
    Biol Trace Elem Res, 2021 Apr;199(4):1246-1252.
    PMID: 32572802 DOI: 10.1007/s12011-020-02251-3
    Oxidative stress (OS) is a key contributing factor in 30-80% of male infertility cases. To date, several antioxidant treatments have been put forth to manage OS-induced male infertility. This study intended to elucidate the impact of coenzyme Q10 (CoQ10) and selenium on seminal fluid parameters and antioxidant status in infertile men with idiopathic oligoasthenoteratospermia (OAT). In this prospective study, 70 patients with idiopathic OAT were randomly allocated to receive CoQ10 (200 mg/day) or selenium (200 μg/day) for 3 months. Semen quality parameters (following WHO guidelines, 5th edition), total antioxidant capacity (TAC), catalase (CAT), and superoxide dismutase (SOD) activities were compared before and after the treatment. The results of the study showed an increase in sperm concentration with CoQ10 treatment (p 
    Matched MeSH terms: Semen Analysis
  8. Durairajanayagam D, Singh D, Agarwal A, Henkel R
    Andrologia, 2021 Feb;53(1):e13666.
    PMID: 32510691 DOI: 10.1111/and.13666
    Mitochondria have multiple functions, including synthesis of adenine triphosphate, production of reactive oxygen species, calcium signalling, thermogenesis and apoptosis. Mitochondria have a significant contribution in regulating the various physiological aspects of reproductive function, from spermatogenesis up to fertilisation. Mitochondrial functionality and intact mitochondrial membrane potential are a pre-requisite for sperm motility, hyperactivation, capacitation, acrosin activity, acrosome reaction and DNA integrity. Optimal mitochondrial activity is therefore crucial for human sperm function and semen quality. However, the precise role of mitochondria in spermatozoa remains to be fully explored. Defects in sperm mitochondrial function severely impair the maintenance of energy production required for sperm motility and may be an underlying cause of asthenozoospermia. Sperm mtDNA is susceptible to oxidative damage and mutations that could compromise sperm function leading to infertility. Males with abnormal semen parameters have increased mtDNA copy number and reduced mtDNA integrity. This review discusses the role of mitochondria in sperm function, along with the causes and impact of its dysfunction on male fertility. Greater understanding of sperm mitochondrial function and its correlation with sperm quality could provide further insights into their contribution in the assessment of the infertile male.
    Matched MeSH terms: Semen Analysis
  9. Alahmar AT, Sengupta P, Dutta S, Calogero AE
    Clin Exp Reprod Med, 2021 Jun;48(2):150-155.
    PMID: 34078008 DOI: 10.5653/cerm.2020.04084
    OBJECTIVE: Oxidative stress (OS) plays a key role in the etiology of unexplained male infertility. Coenzyme Q10 (CoQ10) is a potent antioxidant that may improve semen quality and OS in infertile men with idiopathic oligoasthenoteratospermia (OAT), but the underlying mechanism is unknown. Therefore, the present study was undertaken to investigate the effect of CoQ10 on OS markers and sperm DNA damage in infertile patients with idiopathic OAT.

    METHODS: This prospective controlled study included 50 patients with idiopathic OAT and 50 fertile men who served as controls. All patients underwent a comprehensive medical assessment. Patients and controls received 200 mg of oral CoQ10 once daily for 3 months. Semen and blood were collected and analyzed for sperm parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity, catalase, sperm DNA fragmentation (SDF), and serum hormonal profile.

    RESULTS: The administration of CoQ10 to patients with idiopathic OAT significantly improved sperm quality and seminal antioxidant status and significantly reduced total ROS and SDF levels compared to pretreatment values.

    CONCLUSION: CoQ10, at a dose of 200 mg/day for 3 months, may be a potential therapy for infertile patients with idiopathic OAT, as it improved sperm parameters and reduced OS and SDF in these patients.

    Matched MeSH terms: Semen Analysis
  10. Tarig AA, Wahid H, Rosnina Y, Yimer N, Goh YM, Baiee FH, et al.
    Vet World, 2017 Jun;10(6):672-678.
    PMID: 28717321 DOI: 10.14202/vetworld.2017.672-678
    AIM: The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters.

    MATERIALS AND METHODS: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test.

    RESULTS: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups.

    CONCLUSION: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.

    Matched MeSH terms: Semen Analysis
  11. Faeza NMN, Jesse FFA, Hambali IU, Odhah MN, Umer M, Wessam MMS, et al.
    Trop Anim Health Prod, 2019 Sep;51(7):1855-1866.
    PMID: 30945156 DOI: 10.1007/s11250-019-01878-2
    Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis, a debilitating chronic disease of sheep and goats. Little is known about the buck's reproductive pathophysiology with respect to inoculation with Corynebacterium pseudotuberculois and its immunogen mycolic acid extract. Therefore, this present study was designed to determine the concentration of testosterone hormone, pro-inflammatory cytokines, and semen quality of the experimental animals. A total of 12 bucks, divided into groups 1, 2, and 3 (Negative control group, Positive control group and Mycolic acid group respectively), were enrolled in this study. Following inoculation, all goats were observed for clinical responses and monitored for 60 days post-challenge and were then sacrificed. Blood samples were collected via the jugular once before inoculation and on a weekly basis post-challenge. Semen samples were collected 2 weeks post-challenge and prior to the sacrifice of the experimental animals. During the post inoculation period of 60 days, the concentration of testosterone hormone for group 2 was increased significantly (p  0.05) but increased significantly (p  0.05) as compared to group 1. The concentration of interferon-γ (IFNγ) significantly increased (p  0.05) compared to group 1. Both group 2 and group 3 showed a reduction in semen qualities as compared to group 1, but the severity was more intense in group 2 if compared to group 3. In conclusion, therefore, the present study concluded that the mycolic acid group revealed significant responses of testosterone hormone concentration, semen quality, and its related pro-inflammatory cytokines in bucks following infection but the severity lesser compared to Corynebacterium pseudotuberculosis group.
    Matched MeSH terms: Semen Analysis/veterinary*
  12. Alameri M, Hasikin K, Kadri NA, Nasir NFM, Mohandas P, Anni JS, et al.
    Comput Math Methods Med, 2021;2021:6953593.
    PMID: 34497665 DOI: 10.1155/2021/6953593
    Infertility is a condition whereby pregnancy does not occur despite having unprotected sexual intercourse for at least one year. The main reason could originate from either the male or the female, and sometimes, both contribute to the fertility disorder. For the male, sperm disorder was found to be the most common reason for infertility. In this paper, we proposed male infertility analysis based on automated sperm motility tracking. The proposed method worked in multistages, where the first stage focused on the sperm detection process using an improved Gaussian Mixture Model. A new optimization protocol was proposed to accurately detect the motile sperms prior to the sperm tracking process. Since the optimization protocol was imposed in the proposed system, the sperm tracking and velocity estimation processes are improved. The proposed method attained the highest average accuracy, sensitivity, and specificity of 92.3%, 96.3%, and 72.4%, respectively, when tested on 10 different samples. Our proposed method depicted better sperm detection quality when qualitatively observed as compared to other state-of-the-art techniques.
    Matched MeSH terms: Semen Analysis/statistics & numerical data*
  13. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Behan AA, et al.
    Reprod. Domest. Anim., 2015 Feb;50(1):29-33.
    PMID: 25366298 DOI: 10.1111/rda.12445
    The study was conducted to evaluate the effects of α-linolenic acid (ALA) on frozen-thawed quality and fatty acid composition of bull sperm. For that, twenty-four ejaculates obtained from three bulls were diluted in a Tris extender containing 0 (control), 3, 5, 10 and 15 ng/ml of ALA. Extended semen was incubated at 37°C for 15 min, to allow absorption of ALA by sperm cell membrane. The sample was chilled for 2 h, packed into 0.25-ml straws and frozen in liquid nitrogen for 24 h. Subsequently, straws were thawed and evaluated for total sperm motility (computer-assisted semen analysis), membrane functional integrity (hypo-osmotic swelling test), viability (eosin-nigrosin), fatty acid composition (gas chromatography) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). A higher (p < 0.05) percentage of total sperm motility was observed in ALA groups 5 ng/ml (47.74 ± 07) and 10 ng/ml (44.90 ± 0.7) in comparison with control (34.53 ± 3.0), 3 ng/ml (34.40 ± 2.6) and 15 ng/ml (34.60 ± 2.9). Still, the 5 ng/ml ALA group presented a higher (p < 0.05) percentage of viable sperms (74.13 ± 0.8) and sperms with intact membrane (74.46 ± 09) than all other experimental groups. ALA concentration and lipid peroxidation in post-thawed sperm was higher in all treated groups when compared to the control group. As such, the addition of 5 ng/ml of ALA to Tris extender improved quality of frozen-thawed bull spermatozoa.
    Matched MeSH terms: Semen Analysis/veterinary
  14. Hossain F, Ali O, D'Souza UJ, Naing DK
    J Occup Health, 2010;52(6):353-60.
    PMID: 20924153
    OBJECTIVES: To determine the relationship between semen quality and exposure to pesticide residues.

    METHODS: A cross-sectional study was conducted among male farmers from 3 different communities in Sabah, Malaysia. A total of 152 farmers participated in this study of whom 62 farmers had been exposed to either paraquat or malathion or both to varying extents. Questionnaires were designed to record a history of pesticides exposure and other potential risk factors among farmers. All semen samples were collected, processed and analyzed by qualified personnel based on WHO guidelines. Volume, pH, sperm concentration, motility, morphology and WBC count were examined and recorded. The association between pesticide exposure and semen parameters was highly significant.

    RESULTS: The mean values of volume, pH, sperm concentration, motility, and WBC count were significantly less in the exposed group than in compared with the non-exposed group, with p<0.005. Those who were exposed to pesticides had greater risk of having abnormal semen parameters than those in with the non exposed group, with p values of less than 0.05. The comparison between semen qualities such as lower sperm count, motility and higher percentage of sperm abnormality of those exposed to different types of pesticides (paraquat and malathion) showed no significant differences.

    CONCLUSION: The results showed a significant decline in semen quality with a decline in sperm count, motility and higher percent of teratospermia among subjects with pesticide exposure, and those who were exposed to pesticides had significantly 3 to 9 times greater risk of having abnormal semen parameters.

    Matched MeSH terms: Semen Analysis*
  15. Naing SW, Wahid H, Mohd Azam K, Rosnina Y, Zuki AB, Kazhal S, et al.
    Anim. Reprod. Sci., 2010 Oct;122(1-2):23-8.
    PMID: 20637550 DOI: 10.1016/j.anireprosci.2010.06.006
    In order to improve Boer goat semen quality during cryopreservation process, the influence of sugar supplementation on semen characteristics of sperm were investigated. Three experiments were carried out to investigate the effect of (a) addition of two monosaccharides (fructose and glucose) and two disaccharides sugars (trehalose and sucrose) (b) sugar combination (fructose and trehalose, sucrose and trehalose, glucose and trehalose), and control (glucose without trehalose) (c) different concentrations of trehalose on cryopreservation using Tris based extender. The total motility, forward motility, viability, normal spermatozoa, acrosome integrity and membrane integrity were assessed subjectively. Differences were not detected among monosaccharides, but glucose increased (P<0.05) sperm forward motility in post-thaw goat semen compared to trehalose or sucrose supplementation. Semen quality did not differ (P>0.05) among disaccharide sugar supplementation. Combination of glucose and trehalose significantly improved the characteristics of Boer spermatozoa after cryopreservation (P<0.05). Supplementation of trehalose (198.24mM) into the glucose extender significantly increased total motility, forward motility, live spermatozoa, acrosome integrity and membrane integrity following cryopreservation (P<0.05). In conclusion, glucose had the better ability to support Boer sperm motility and movement patterns. Combination of monosaccharide (glucose) and disaccharide (trehalose) improved semen quality following cryopreservation. Trehalose supplementation at the concentration of 198.24mM to the glucose extender conferred the greater improvement of semen quality for Boer semen cryopreservation.
    Matched MeSH terms: Semen Analysis/veterinary*
  16. Alahmar AT, Calogero AE, Sengupta P, Dutta S
    World J Mens Health, 2021 Apr;39(2):346-351.
    PMID: 32009311 DOI: 10.5534/wjmh.190145
    PURPOSE: Oxidative stress and sperm DNA fragmentation (SDF) are potential contributing factors for idiopathic male infertility. Coenzyme Q10 (CoQ10) have been reported to be effective in the treatment of idiopathic male infertility, in general, owing to its antioxidant properties. Thus, the present study intends to investigate the effects of CoQ10 therapy on semen parameters, oxidative stress markers and SDF in infertile men, specifically with idiopathic oligoasthenozoospermia (OA).

    MATERIALS AND METHODS: In this case-control study, sixty-five infertile patients with idiopathic OA and forty fertile men (control) were included. All participants underwent semen analysis based on the World Health Organization guidelines (5th edition, 2010). Patients received CoQ10 at the dose of 200 mg/d orally for three months. Seminal plasma CoQ10, total antioxidant capacity (TAC), total reactive oxygen species (ROS), glutathione peroxidase (GPx), and SDF levels were measured in controls (baseline) and infertile patients pre- and post-CoQ10 treatment.

    RESULTS: CoQ10 treatment for three months significantly improved sperm concentration (p<0.05), progressive motility (p<0.05), total motility (p<0.01), seminal fluid CoQ10 concentration (p<0.001), TAC (p<0.001), and GPx (p<0.001) levels in infertile men with OA. Further, ROS level (p<0.05) and SDF percentage (p<0.001) were reduced in OA patients as compared to the baseline. CoQ10 levels also correlated positively with sperm concentration (r=0.48, p=0.01) and total motility (r=0.59, p=0.003) while a negative correlation was recorded between SDF and sperm motility (r=-0.54, p=0.006).

    CONCLUSIONS: CoQ10 supplementation for three months could improve semen parameters, oxidative stress markers and reduce SDF in infertile men with idiopathic OA.

    Matched MeSH terms: Semen Analysis
  17. Iswadi MI, Ann ZF, Hafiz MM, Hafiz MD, Fahrul FJ, Hajarian H, et al.
    Open Vet J, 2012;2(1):109-14.
    PMID: 26623302
    The Malayan gaur (Bos gaurus hubbacki) or Seladang is classified as vulnerable by the International Union for Conservation of Nature and Natural Resources (IUCN). The Malayan gaur is mainly distributed in the tropical woodlands of Peninsular Malaysia and Southern Thailand. The aim of this study was to collect, analyze and cryopreserve the semen of wild Malayan gaur. Transrectal massage (TM) and electroejaculation (EEJ) technique was applied in semen collection of the Malayan gaur. The semen was then cryopreserved in liquid nitrogen using slow freezing technique. Makler counting chamber was used to evaluate sperm concentration and motility, while the sperm viability and morphology of fresh and post-thaw sperm was determined using eosin-nigrosin staining protocol. As a result, we have successfully collected the Malayan gaur semen using EEJ technique. Sperm motility, viability and morphological changes of the post-thaw semen of Malayan gaur were found undesirable due to the complication of the cryopreservation process. On the basis of current study it can be concluded that Malayan gaur bulls semen can be obtain by EEJ with no evidence of rectal trauma. Optimization of the process of cryopreservation for Malayan gaur sperm is needed to maintain the cryoviability of the good sperm quality. The data generated in this study would be useful in conservation of genetic diversity program for Malayan gaur.
    Matched MeSH terms: Semen Analysis
  18. Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF
    Front Pharmacol, 2021;12:631402.
    PMID: 33986667 DOI: 10.3389/fphar.2021.631402
    Edible bird's nest (EBN) is reported to have a positive in vitro proliferative effect and contain male reproductive hormones. Spermatogonia cells proliferate during spermatogenesis under male reproductive hormones stimulation that include testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Characterization of EBN through liquid chromatography-mass spectrometry (LCMS) has found testosterone as a base peak. Six types of amino acids, estradiol and sialic acid were among the major peaks that have been characterized. Based on the presence of these reproductive components, this study evaluated different doses of EBN on sperm parameters and male reproductive hormones of Sprague Dawley rats. Sixteen Sprague Dawley rats at the age of eight weeks were randomly and equally divided into four groups, which are Control, 10 mg/kg BW/d 50 mg/kg BW/d, and 250 mg/kg BW/d EBN group. The rats were fed with EBN enriched pellet daily and water ad-libitum. Rats were sacrificed and the organ was weighed for organ coefficients after eight weeks of treatment. Sperm concentration, percentage of sperm motility, and sperm viability were evaluated. Meanwhile, ELISA method was used to measure testosterone, FSH, and LH. Findings showed that there were no significant differences in organ coefficient between groups. Supplementation of 250 mg/kg BW/d EBN demonstrated a significant increase in sperm concentration, percentage of sperm motility as well as FSH and LH level compared to 10 mg/kg BW/d group. There was a dose-dependent increase in testosterone level but was not significant between groups. Based on these findings, EBN is concluded to have crucial effects on male reproductive parameters.
    Matched MeSH terms: Semen Analysis
  19. Alahmar AT, Calogero AE, Singh R, Cannarella R, Sengupta P, Dutta S
    Clin Exp Reprod Med, 2021 Jun;48(2):97-104.
    PMID: 34078005 DOI: 10.5653/cerm.2020.04175
    Male infertility has a complex etiopathology, which mostly remains elusive. Although research has claimed that oxidative stress (OS) is the most likely underlying mechanism of idiopathic male infertility, the specific treatment of OS-mediated male infertility requires further investigation. Coenzyme Q10 (CoQ10), a vitamin-like substance, has been found in measurable levels in human semen. It exhibits essential metabolic and antioxidant functions, as well as playing a vital role in mitochondrial bioenergetics. Thus, CoQ10 may be a key player in the maintenance of biological redox balance. CoQ10 concentrations in seminal plasma directly correlate with semen parameters, especially sperm count and sperm motility. Seminal CoQ10 concentrations have been shown to be altered in various male infertility states, such as varicocele, asthenozoospermia, and medical or surgical regimens used to treat male infertility. These observations imply that CoQ10 plays an important physiological role in the maintenance and amelioration of semen quality. The present article thereby aimed to review the possible mechanisms through which CoQ10 plays a role in the regulation of male reproductive function, and to concisely discuss its efficacy as an ameliorative agent in restoring semen parameters in male infertility, as well as its impact on OS markers, sperm DNA fragmentation, pregnancy, and assisted reproductive technology outcomes.
    Matched MeSH terms: Semen Analysis
  20. Sukardi, S., Yaakub, H., Ganabadi, S., Cheng, L.H.
    Malays J Nutr, 2006;12(2):201-211.
    MyJurnal
    L-arginine is an amino acid, which serves as the sole substrate for nitric oxide (NO) synthesis with the concomitant formation of L-citrulline in biologic system. NO has been demonstrated to be involved in smooth muscle relaxation and vasodilation, immune regulation and neurotransmission. It also has an important function as both intercellular and intracellular signals in many physiological systems, including the reproductive system where NO mediates penis erection. This study was undertaken to determine the effects of L-arginine on sperm motility, sperm count, and the nitric oxide level in the seminal plasma. Twelve sexually matured male rabbits (Oryctolagus cuniculus) were randomly divided into four groups with three rabbits each, which were control, low, medium, and high concentration groups. The treatment groups were force-fed with 100mg/kg, 200mg/kg, and 300mg/kg body weight of L-arginine for four weeks, whereas the control group was force-fed with water. Semen samples were collected every three days alternatively for a week before starting treatment and then after four weeks of treatment. Pre-treatment and post-treatment results were compared. Semen samples were collected using artificial vaginas from each group for sperm analysis such as sperm motility, sperm count and NO level in seminal plasma. Sperm motility and sperm count were analysed manually under microscope (twenty power objective), using a Makler counting chamber. NO levels in the seminal plasma were determined using Griess reaction. The results obtained from this study showed that oral consumption of L-arginine exerted a significant (p
    Matched MeSH terms: Semen Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links