Displaying all 5 publications

Abstract:
Sort:
  1. Haditiar Y, Putri MR, Ismail N, Muchlisin ZA, Ikhwan M, Rizal S
    Heliyon, 2020 Sep;6(9):e04828.
    PMID: 32939416 DOI: 10.1016/j.heliyon.2020.e04828
    Malacca Strait (MS) has an important role and potential for many countries. It is a major transportation route for oil and commodities across continents. In addition, various activities such as shipping, fishing, aquaculture, oil drilling, and energy are also carried out in MS. Tides strongly affect the MS environment so that it becomes a major parameter in MS management. This paper is the first study, which presents MS tidal hydrodynamics based on a baroclinic and nonhydrostatic approach. Tidal hydrodynamics in MS and the surrounding waters were assessed using tidal forces, temperature, salinity, and density. This study analyzes the amplitude, phase, current ellipses, and semi-major axis of the tides. These variables are obtained from the simulation results of the three-dimensional numerical models of M2 tides and combined tides (M2, S2, N2, K1, and O1) with nonhydrostatic models. Then the results obtained are verified by observation data. Amplitude and phase of the tidal wave in MS originate from two directions, namely the northern part of MS (Andaman Sea) and the South China Sea (SCS). Tides from the north of MS propagate into the MS, while tides from the SCS travel to Singapore Waters (SW) and the south of MS. This causes a complex residual flow in SW and shoaling in the middle of MS. Shoaling in the middle of MS is characterized by a large amplitude and semi-major, as in B. Siapiapi. The results of this analysis show that tidal waves are dominated by semidiurnal types rather than diurnal types. The M2 current ellipse has dominantly anticlockwise rotation along the west of the MS, while along the east of MS, it has generally a clockwise rotation.
    Matched MeSH terms: Tidal Waves
  2. Mohd Jamil Abdul Wahab, Noor Azrieda Abd Rashid, Salmiah Ujang, Choon LS
    Sains Malaysiana, 2016;45:1139-1147.
    Timber scaffold boards have been widely utilised in the offshore construction industry. However, technical specifications
    and inspection procedure for the application of scaffold boards from a wood material were inadequate. In the development
    of the standard requirements, evaluation of actual engineering practices could indicate the level of workplace safety. A
    study was conducted to identify risk and safety measures concerning the use of timber scaffold boards in construction.
    This article discusses on the occupational risks and ergonomics issues of the scaffolding application based on the physical
    and mechanical conditions of tropical timber scaffold boards extracted from offshore oil and gas rigs. The boards were
    exposed to a seasonal climate of East Coast monsoon of South China Sea between November and February. The scaffolding
    application extended up to 20 m directly above the ocean surface and some boards were completely immersed below
    the ocean surface particularly during elevated tidal waves. Some of the boards were installed as the on-deck platforms.
    Forty scaffold boards fabricated from tropical timber species were evaluated. Physical characteristics of the boards
    were described by natural and man-made factors. A three-point bending test was conducted to determine the maximum
    load capacity of each board and the mode of fracture was evaluated. Timber identification test was conducted to identify
    the groups of the timber being used. The microscopic observation confirmed the presence of hyphae which indicated the
    biological deterioration has happened in some of the boards. Occupational risks were summarised based on the results
    of the physical and mechanical assessments
    Matched MeSH terms: Tidal Waves
  3. Zulfa, A.W., Norizah, K.
    MyJurnal
    The mangrove forest ecosystem acts as a shield against the destructive tidal waves, preventing the coastal areas and other properties nearby from severe damages; this protective function certainly deserves attention from researchers to undertake further investigation and exploration. Mangrove forest provides different goods and services. The unique environmental factors affecting the growth of mangrove forest are as follows: distance from the sea or the estuary bank, frequency and duration of tidal inundation, salinity, and composition of the soil. These crucial factors may under certain circumstances turn into obstacles in accessing and managing the mangrove forest. One effective method to circumvent this shortcoming is by using remotely sensed imagery data, which offers a more accurate way of measuring the ecosystem and a more efficient tool of managing the mangrove forest. This paper attempts to review and discuss the usage of remotely sensed imagery data in mangrove forest management, and how they will improve the accuracy and precision in measuring the mangrove forest ecosystem. All types of measurements related to the mangrove forest ecosystem, such as detection of land cover changes, species distribution mapping and disaster observation should take advantage of the advanced technology; for example, adopting the digital image processing algorithm coupled with high-resolution image available nowadays. Thus, remote sensing is a highly efficient, low-cost and time-saving technique for mangrove forest measurement. The application of this technique will further add value to the mangrove forest and enhance its in-situ conservation and protection programmes in combating the effects of the rising sea level due to climate change.
    Matched MeSH terms: Tidal Waves
  4. Sonak S, Pangam P, Giriyan A
    J Environ Manage, 2008 Oct;89(1):14-23.
    PMID: 17544565
    A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts.
    Matched MeSH terms: Tidal Waves*
  5. Lim, Yi-Yi, Lee, Wei-Kang, Leow, Adam Thean-Chor, Parameswari Namasivayam, Janna-Ong Abdullah, Ho, Chai-Ling
    MyJurnal
    Red seaweeds (Rhodophyta) produce a variety of sulfated galactans in their cell wall matrix and intercellular space, contributing up to 50-60 % of their total dry weight. These sulfated polysaccharides are made up of galactose disaccharides substituted with sulfate, methoxyl, pyruvic acid, or non-galactose monosaccharides (e.g. xylose, glucose and mannose). They are required by the Rhodophytes for protection against pathogen, desiccation, tidal waves and extreme changes in pH, temperature and salinity. Since ancient times, sulfated galactans from red seaweeds, such as agar and carrageenan, have been consumed as human foods and later being used in traditional medicine. Nowadays, some red seaweeds are cultivated and exploited for commercial uses in various fields. In this review, different types of sulfated galactans found in red seaweeds and their current and potential uses in food, biotechnology, medical and pharmaceutical industries are discussed.
    Matched MeSH terms: Tidal Waves
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links