AIM OF THE STUDY: This study's primary aim was to investigate the effect of a cultivated fruiting body of O. sinensis strain (OCS02®) on airways patency and the secondary focus was to investigate its effect on the lifespan of Caenorhabditis elegans.
MATERIALS AND METHODS: A cultivated strain, OCS02®, was employed and the metabolic profile of its cold-water extract (CWE) was analysed through liquid chromatography-mass spectrometry (LC-MS). Organ bath approach was used to investigate the pharmacological properties of OCS02® CWE when applied on airway tissues obtained from adult male Sprague-Dawley rats. The airway relaxation mechanisms of OCS02® CWE were explored using pharmacological tools, where the key regulators in airway relaxation and constriction were investigated. For the longevity study, age-synchronised, pos-1 RNAi-treated wild-type type Caenorhabditis elegans at the L4 stage were utilised for a lifespan assay.
RESULTS: Various glycopeptides and amino acids, particularly a high concentration of L-arginine, were identified from the LC-MS analysis. In airway tissues, OCS02® CWE induced a significantly greater concentration-dependent relaxation when compared to salbutamol. The relaxation response was significantly attenuated in the presence of NG-Nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) and several K+ channel blockers. The longevity effect induced by OCS02® CWE (5 mg/mL and above) was observed in C. elegans by at least 17%.
CONCLUSIONS: These findings suggest that the airway relaxation mechanisms of OCS02® CWE involved cGMP-dependent and cGMP-independent nitric oxide signalling pathways. This study provides evidence that the cultivated strain of OCS02® exhibits airway relaxation effects which supports the traditional use of its wild O. sinensis in strengthening respiratory health.
MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.
RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p trachea and bronchus but at a longer incubation interval between concentrations. CWE pre-incubation significantly reduced the maximum responses of carbachol-induced contractions (in both trachea, p = 0.0012 and bronchus, p = 0.001), and 5-HT-induced contractions (in trachea, p = 0.0048 and bronchus, p = 0.0014). Ipratropium has demonstrated a significant relaxation effect in both trachea (p = 0.0004) and bronchus (p = 0.0031), whereas salmeterol has only affected the bronchus (p = 0.0104). The involvement of β2-adrenoceptor and potassium channel in CWE-mediated airway relaxation is ruled out, but the bronchodilator effect was unequivocally affected by influx of calcium.
CONCLUSIONS: The bronchodilator effect of L. rhinocerotis on airways is mediated by calcium signalling pathway downstream of Gαq-coupled protein receptors. The airway relaxation effect is both concentration- and incubation time-dependent. Our findings provide unequivocal evidence to support its traditional use to relieve asthma and cough.
METHODS: A crude methanol extract of the aerial parts of Isodon rugosus (Ir.Cr.) was used for both in vitro and in vivo experiments. The plant extract was tested on isolated rabbit jejunum preparations for possible presence of spasmolytic activity. Moreover, isolated rabbit tracheal and aorta preparations were used to ascertain the relaxant effects of the extract. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of Ir.Cr were also determined as well as its antioxidant activity. The in vivo antiemetic activity of the extract was evaluated by using the chick emesis model, while the analgesic and antipyretic activities were conducted on albino mice.
RESULTS: The application of the crude extract of I. rugosus to isolated rabbit jejunum preparations exhibited relaxant effect (0.01-0.3 mg/ml). The Ir.Cr also relaxed K+(80 m M)-induced spastic contractions in isolated rabbit jejunum preparations and shifted the Ca+2 concentration response curves towards right (0.01-0.3 mg/ml). Similarly, the extract, when applied to the isolated rabbit tracheal preparations relaxed the carbachol (1 μM)--as well as K+ (80 mM)-induced contractions in a concentration range of 0.01-1.0 mg/ml. Moreover, it also relaxed (0.01-3.0 mg/ml) the phenylephrine (1 μM)- and K+ (80 mM)-induced contractions in isolated rabbit aorta preparations. The Ir.Cr (80 mg/kg) demonstrated antipyretic activity on pyrogen-induced pyrexia in rabbits as compared to aspirin as standard drug. The Ir.Cr also exhibited anti-oxidant as well as inhibitory effect on acetyl- and butyryl-cholinesterase and lipoxygenase (0.5 mg/ml).
CONCLUSIONS: The observed relaxant effect on isolated rabbit jejunum, trachea and aorta preparations caused by Ir.Cr is possibly to be mediated through Ca+2 channel blockade and therefore may provided scientific basis to validate the folkloric uses of the plant in the management of gastrointestinal, respiratory and cardiovascular ailments. The observed antioxidant activity as well as the lipoxygenase inhibitory activity may validate its traditional use in pain and inflammations.