METHODS: An iterative airway pressure reconstruction (IPR) method is used to reconstruct asynchronous airway pressure waveforms to better match passive breathing airway waveforms using a single compartment model. The reconstructed pressure enables estimation of respiratory mechanics of airway pressure waveform essentially free from asynchrony. Reconstruction enables real-time breath-to-breath monitoring and quantification of the magnitude of the asynchrony (MAsyn).
RESULTS AND DISCUSSION: Over 100,000 breathing cycles from MV patients with known asynchronous breathing were analyzed. The IPR was able to reconstruct different types of asynchronous breathing. The resulting respiratory mechanics estimated using pressure reconstruction were more consistent with smaller interquartile range (IQR) compared to respiratory mechanics estimated using asynchronous pressure. Comparing reconstructed pressure with asynchronous pressure waveforms quantifies the magnitude of asynchronous breathing, which has a median value MAsyn for the entire dataset of 3.8%.
CONCLUSION: The iterative pressure reconstruction method is capable of identifying asynchronous breaths and improving respiratory mechanics estimation consistency compared to conventional model-based methods. It provides an opportunity to automate real-time quantification of asynchronous breathing frequency and magnitude that was previously limited to invasively method only.
MATERIALS AND METHODS: The composition of L. rhinocerotis TM02 cultivar was analyzed. Organ bath experiment was employed to study the bronchodilator effect of Lignosus rhinocerotis cold water extract (CWE) on rat isolated airways. Trachea and bronchus were removed from male Sprague-Dawley rats, cut into rings of 2 mm, pre-contracted with carbachol before adding CWE into the bath in increasing concentrations. To investigate the influence of incubation time, tissues were exposed to intervals of 5, 15 and 30 min between CWE concentrations after pre-contraction with carbachol in subsequent protocol. Next, tissues were pre-incubated with CWE before the addition of different contractile agents, carbachol and 5-hydroxytrptamine (5-HT). The bronchodilator effect of CWE was compared with salmeterol and ipratropium. In order to uncover the mechanism of action of CWE, the role of beta-adrenoceptor, potassium and calcium channels was investigated.
RESULTS: Composition analysis of TM02 cultivar revealed the presence of β-glucans and derivatives of adenosine. The extract fully relaxed the trachea at 3.75 mg/ml (p trachea and bronchus but at a longer incubation interval between concentrations. CWE pre-incubation significantly reduced the maximum responses of carbachol-induced contractions (in both trachea, p = 0.0012 and bronchus, p = 0.001), and 5-HT-induced contractions (in trachea, p = 0.0048 and bronchus, p = 0.0014). Ipratropium has demonstrated a significant relaxation effect in both trachea (p = 0.0004) and bronchus (p = 0.0031), whereas salmeterol has only affected the bronchus (p = 0.0104). The involvement of β2-adrenoceptor and potassium channel in CWE-mediated airway relaxation is ruled out, but the bronchodilator effect was unequivocally affected by influx of calcium.
CONCLUSIONS: The bronchodilator effect of L. rhinocerotis on airways is mediated by calcium signalling pathway downstream of Gαq-coupled protein receptors. The airway relaxation effect is both concentration- and incubation time-dependent. Our findings provide unequivocal evidence to support its traditional use to relieve asthma and cough.