Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Malik YA
    Malays J Pathol, 2022 Dec;44(3):387-396.
    PMID: 36591708
    The genetic evolution of SARS-CoV-2 began in February 2020, with G614 spike protein strains superseding D614 strains globally. Since then with each subsequent mutations, the SARS-CoV-2 variants of concern, namely Alpha, Beta, Gamma, Delta and Omicron, superseded the previous one to become the dominant strain during the pandemic. By the end of November 2022, the Omicron variant and its descendent lineages account for 99.9% of sequences reported globally. All five VOCs have mutations located in the RBD of the spike protein, resulting in increased affinity of the spike protein to the ACE2 receptors resulting in enhanced viral attachment and its subsequent entry into the host cells. In vitro studies showed the mutations in spike protein help increase the viral fitness, enhancing both transmissibility and replication. In general, Alpha, Beta, Gamma, and Delta variants, were reported with higher transmissibility of 43-90%, around 50%, 170-240%, or 130-170% than their co-circulating VOCs, respectively. The Omicron however was found to be 2.38 times and 3.20 times more transmissible than Delta among the fully-vaccinated and boostervaccinated households. Even the SARS-Cov-2 Omicron subvariants appear to be inherently more transmissible than the ones before. With the broader distribution, enhanced evasion, and improved transmissibility, SARS-CoV-2 variants infection cause severe diseases due to immune escape from host immunity and faster replication. Reports have shown that each subsequent VOC, except Omicron, cause increased disease severity compared with those infected with other circulating variants. The Omicron variant infection however, appears to be largely associated with a lower risk of hospitalisation, ICU admission, mechanical ventilation, and even a shorter length of hospital stay. It has been shown that the relatively much slower replication of the Omicron variants in the lung, resulted in a less severe disease.
    Matched MeSH terms: Virulence/genetics
  2. Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA
    Virol J, 2024 Mar 06;21(1):55.
    PMID: 38449001 DOI: 10.1186/s12985-024-02328-8
    Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
    Matched MeSH terms: Virulence/genetics
  3. Das S, Pandey AK, Morris DE, Anderson R, Lim V, Wie CC, et al.
    BMC Genomics, 2024 Apr 17;25(1):381.
    PMID: 38632538 DOI: 10.1186/s12864-024-10276-4
    Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
    Matched MeSH terms: Virulence/genetics
  4. Hanafiah A, Razak SA, Neoh HM, Zin NM, Lopes BS
    Braz J Infect Dis, 2020 11 04;24(6):545-551.
    PMID: 33157035 DOI: 10.1016/j.bjid.2020.10.005
    BACKGROUND: Helicobacter pylori harbouring cag-pathogenicity island (cagPAI) which encodes type IV secretion system (T4SS) and cagA virulence gene are involved in inflammation of the gastric mucosa. We examined all the 27 cagPAI genes in 88 H. pylori isolates from patients of different ethnicities and examined the association of the intactness of cagPAI region with histopathological scores of the gastric mucosa.

    RESULTS: 96.6% (n=85) of H. pylori isolates were cagPAI-positive with 22.4% (19/85) having an intact cagPAI, whereas 77.6% (66/85) had a partial/rearranged cagPAI. The frequency of cag2 and cag14 were found to be significantly higher in H. pylori isolated from Malays, whereas cag4 was predominantly found in Chinese isolates. The cag24 was significantly found in higher proportions in Malay and Indian isolates than in Chinese isolates. The intactness of cagPAI region showed an association with histopathological scores of the gastric mucosa. Significant association was observed between H. pylori harbouring partial cagPAI with higher density of bacteria and neutrophil activity, whereas strains lacking cagPAI were associated with higher inflammatory score.

    CONCLUSIONS: The genotypes of H. pylori strains with various cagPAI rearrangement associated with patients' ethnicities and histopathological scores might contribute to the pathogenesis of H. pylori infection in a multi-ethnic population.

    Matched MeSH terms: Virulence/genetics
  5. En ETS, Ismail N, Nasir NSM, Ismadi YKM, Zuraina NMNN, Hassan SA
    J Infect Public Health, 2023 Jul;16(7):1089-1092.
    PMID: 37224619 DOI: 10.1016/j.jiph.2023.05.015
    Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathotype in addition to classical Klebsiella pneumoniae, with its ability to cause life-threatening, community-acquired metastatic infections even in healthy individuals. We presented a case of cerebral abscess preceded by otitis media in a 10-year-old child caused by hvKp. The isolates from blood pus aspirate were later identified as K. pneumoniae capsular serotype K2 and closely related to sequence type (ST65), with multiple hypervirulent genes detected (rmpA, rmpA2, iucA and peg344). She succumbed to death despite surgical drainage and susceptible antibiotic therapy. Clinicians should be cognizant of the rising incidence of hvKp infections in pediatric populations.
    Matched MeSH terms: Virulence/genetics
  6. McMinn PC
    FEMS Microbiol Rev, 2002 Mar;26(1):91-107.
    PMID: 12007645
    Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
    Matched MeSH terms: Virulence/genetics
  7. Subejano MSE, Penuliar G
    Trop Biomed, 2023 Dec 01;40(4):422-429.
    PMID: 38308829 DOI: 10.47665/tb.40.4.007
    Campylobacteriosis is a human infection primarily caused by Campylobacter jejuni and Campylobacter coli. Consumption of contaminated chicken and poultry products is the main mode of transmission. These bacteria possess virulence factors, including adhesins and toxins, which contribute to their pathogenesis. Moreover, their large genomes undergo frequent genetic recombination, resulting in a high degree of genetic diversity. However, limited information is available regarding the virulence and genotypic diversity profiles of these microorganisms in the Philippines. The objective of this study was to address this knowledge gap by characterizing Campylobacter isolates obtained from chicken offal sold in wet markets in Metro Manila, Philippines. Multilocus Sequence Typing (MLST) analysis was performed to determine the sequence types, resulting in the identification of 13 unique sequence types, including nine previously unreported ones, and three clonal complexes. Notably, the widespread sequence type ST-305 was found in samples from different markets. Furthermore, six isolates deposited in the Campylobacter PubMLST database were identified as C. coli based on allele profiles. Profiling using 10 selected virulence genes revealed that more than half of the isolates carried these genes. The most prevalent virulence gene was cadF (100%), followed by flaA (95%), racR, cdtA, cdtB, and cdtC (85%). The genes dnaJ and ceuE were also present in 75% of the isolates. Despite the limited sample size, the findings of this study reveal a significant level of genotypic diversity among the Campylobacter isolates. This diversity has important implications for source attribution studies and the identification of strains involved in campylobacteriosis outbreaks. Furthermore, the investigation of virulence factors associated with colonization and invasion of the avian gut can provide insights for the development of practical applications in Campylobacter control strategies. Understanding and addressing these factors are crucial steps toward mitigating the risk of Campylobacter infections and enhancing public health efforts.
    Matched MeSH terms: Virulence/genetics
  8. Pang T
    Trends Microbiol, 1998 Sep;6(9):339-42.
    PMID: 9778724
    Matched MeSH terms: Virulence/genetics
  9. Puah SM, Puthucheary SD, Wang JT, Pan YJ, Chua KH
    ScientificWorldJournal, 2014;2014:590803.
    PMID: 25215325 DOI: 10.1155/2014/590803
    The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P = 0.049) at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.
    Matched MeSH terms: Virulence/genetics*
  10. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Virulence/genetics
  11. Chong YM, How KY, Yin WF, Chan KG
    Molecules, 2018 04 21;23(4).
    PMID: 29690523 DOI: 10.3390/molecules23040972
    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
    Matched MeSH terms: Virulence/genetics
  12. Okubo Y
    Malays J Pathol, 2017 08;39(2):207-208.
    PMID: 28866707
    No abstract available.
    Matched MeSH terms: Virulence/genetics*
  13. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

    Matched MeSH terms: Virulence/genetics
  14. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
    Matched MeSH terms: Virulence/genetics
  15. Osman HA, Hasan H, Suppian R, Hassan S, Andee DZ, Abdul Majid N, et al.
    Turk J Med Sci, 2015;45(4):940-6.
    PMID: 26422871
    BACKGROUND/AIM: The severity of disease outcome in dyspepsia has been attributed to Helicobacter pylori virulence genes. The aim of this study was to determine the distribution of H. pylori virulence genes (cagA, babA2, and dupA) and to determine whether or not there arises a significant correlation with clinical dyspepsia outcomes.

    MATERIALS AND METHODS: H. pylori genotypes cagA, babA2, and dupA were identified by polymerase chain reactions from gastric biopsy samples in 105 H. pylori-positive patients.

    RESULTS: The positive rates for cagA, babA2, and dupA genes in H. pylori dyspeptic patients were 69.5%, 41.0%, and 22.9%, respectivel cagA was more prevalent in Indians (39.7%), babA2 was more prevalent in Malays (39.5%), and dupA detection occurred more frequently in both Indians and Malays and at the same rate (37.5%). The Chinese inhabitants had the lowest prevalence of the three genes. Nonulcer disease patients had a significantly higher distribution of cagA (76.7%), babA2 (74.4%), and dupA (75.0%). There was no apparent association between these virulence genes and the clinical outcomes.

    CONCLUSION: The lower prevalence of these genes and variations among different ethnicities implies that the strains are geographically and ethnically dependent. None of the virulence genes were knowingly beneficial in predicting the clinical outcome of H. pylori infection in our subjects.

    Matched MeSH terms: Virulence/genetics
  16. Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM
    Curr Microbiol, 2023 Jun 25;80(8):255.
    PMID: 37356021 DOI: 10.1007/s00284-023-03354-5
    Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
    Matched MeSH terms: Virulence/genetics
  17. Khoo E, Roslee R, Zakaria Z, Ahmad NI
    J Vet Sci, 2023 Nov;24(6):e82.
    PMID: 38031519 DOI: 10.4142/jvs.23053
    BACKGROUND: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years.

    OBJECTIVE: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia.

    METHODS: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s).

    RESULTS: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3″)-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected.

    CONCLUSION: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

    Matched MeSH terms: Virulence/genetics
  18. Abidin N, Ismail SI, Vadamalai G, Yusof MT, Hakiman M, Karam DS, et al.
    PLoS One, 2020;15(6):e0234350.
    PMID: 32530926 DOI: 10.1371/journal.pone.0234350
    Jackfruit-bronzing is caused by bacteria Pantoea stewartii subspecies stewartii (P. stewartii subsp. stewartii), showing symptoms of yellowish-orange to reddish discolouration and rusty specks on pulps and rags of jackfruit. Twenty-eight pure bacterial strains were collected from four different jackfruit outbreak collection areas in Peninsular Malaysia (Jenderam, Maran, Muadzam Shah and Ipoh). Positive P. stewartii subsp. stewartii verification obtained in the study was based on the phenotypic, hypersensitivity, pathogenicity and molecular tests. Multilocus sequence analysis (MLSA) was performed using four housekeeping genes (gyrB, rpoB, atpD and infB) on all 28 bacterial strains. Single gyrB, rpoB, atpD and infB phylogenetic trees analyses revealed the bootstrap value of 99-100% between our bacterial strains with P. stewartii subsp. stewartii reference strains and P. stewartii subsp. indologenes reference strains. On the other hand, phylogenetic tree of the concatenated sequences of the four housekeeping genes revealed that our 28 bacterial strains were more closely related to P. stewartii subsp. stewartii (99% similarities) compared to its close relative P. stewartii subsp. indologenes, although sequence similarity between these two subspecies were up to 100%. All the strains collected from the four collection areas clustered together, pointing to no variation among the bacterial strains. This study improves our understanding and provided new insight on the genetic diversity of P. stewartii subsp. stewartii associated with jackfruit-bronzing in Malaysia.
    Matched MeSH terms: Virulence/genetics
  19. Tan SY, Dutta A, Jakubovics NS, Ang MY, Siow CC, Mutha NV, et al.
    BMC Bioinformatics, 2015;16:9.
    PMID: 25591325 DOI: 10.1186/s12859-014-0422-y
    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.
    Matched MeSH terms: Virulence/genetics*
  20. Madaha EL, Mienie C, Gonsu HK, Bughe RN, Fonkoua MC, Mbacham WF, et al.
    PLoS One, 2020;15(9):e0238390.
    PMID: 32886694 DOI: 10.1371/journal.pone.0238390
    Pseudomonas aeruginosa has been implicated in a wide range of post-operation wound and lung infections. A wide range of acquired resistance and virulence markers indicate surviving strategy of P. aeruginosa. Complete-genome analysis has been identified as efficient approach towards understanding the pathogenicity of this organism. This study was designed to sequence the entire genome of P. aeruginosa UY1PSABAL and UY1PSABAL2; determine drug-resistance profiles and virulence factors of the isolates; assess factors that contribute toward stability of the genomes; and thereafter determine evolutionary relationships between the strains and other isolates from similar sources. The genomes of the MDR P. aeruginosa UY1PSABAL and UY1PSABAL2 were sequenced on the Illumina Miseq platform. The raw sequenced reads were assessed for quality using FastQC v.0.11.5 and filtered for low quality reads and adapter regions using Trimmomatic v.0.36. The de novo genome assembly was made with SPAdes v.3.13 and annotated using Prokka v.2.1.1 annotation pipeline; Rapid Annotation using Subsytems Technology (RAST) server v.2.0; and PATRIC annotation tool v.3.6.2. Antimicrobial resistance genes and virulence determinants were searched through the functional annotation data generated from Prokka, RAST and PATRIC annotation pipelines; In addition to ResFinder and Comprehensive Antibiotic Resistance Database (CARD) which were employed to determine resistance genes. The PHAge Search Tool Enhanced Release (PHASTER) web server was used for the rapid identification and annotation of prophage sequences within bacterial genome. Predictive secondary metabolites were identified with AntiSMASH v.5.0. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and cas genes regions were also investigated with the CRISPRone and CRISPRFinder server. The genome sizes of 7.0 and 6.4 Mb were determined for UY1PSABAL and UY1PSABAL2 strains with G+C contents of 66.1% and 66.48% respectively. β-lactamines resistance genes blaPAO, aminoglycoside phosphorylating enzymes genes aph(3')-IIb, fosfomycine resistance gene fosA, vancomycin vanW and tetracycline tetA were among identified resistance genes harboured in both isolates. UY1PSABAL bore additional aph(6)-Id, aph(3'')-Ib, ciprofloxacin-modifying enzyme crpP and ribosomal methylation enzyme rmtB. Both isolates were found harbouring virulence markers such as flagella and type IV pili; and also present various type III secretion systems such as exoA, exoS, exoU, exoT. Secondary metabolites such as pyochelin and pyoverdine with iron uptake activity were found within the genomes as well as quorum-sensing systems, and various fragments for prophages and insertion sequences. Only the UY1PSABAL2 contains CRISPR-Cas system. The phylogeny revealed a very close evolutionary relationship between UY1PSABAL and the similar strain isolated from Malaysia; the same trend was observed between UY1PSABAL2 and the strain from Chinese origin. Complete analyses of the entire genomes provide a wide range of information towards understanding pathogenicity of the pathogens in question.
    Matched MeSH terms: Virulence/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links