Displaying all 8 publications

Abstract:
Sort:
  1. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K
    Biomed Res Int, 2015;2015:825203.
    PMID: 26484353 DOI: 10.1155/2015/825203
    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.
    Matched MeSH terms: Viruses/drug effects*
  2. Kanauchi O, Andoh A, AbuBakar S, Yamamoto N
    Curr Pharm Des, 2018;24(6):710-717.
    PMID: 29345577 DOI: 10.2174/1381612824666180116163411
    Recently, the risk of viral infection has dramatically increased owing to changes in human ecology such as global warming and an increased geographical movement of people and goods. However, the efficacy of vaccines and remedies for infectious diseases is limited by the high mutation rates of viruses, especially, RNA viruses. Here, we comprehensively review the effectiveness of several probiotics and paraprobiotics (sterilized probiotics) for the prevention or treatment of virally-induced infectious diseases. We discuss the unique roles of these agents in modulating the cross-talk between commensal bacteria and the mucosal immune system. In addition, we provide an overview of the unique mechanism by which viruses are eliminated through the stimulation of type 1 interferon production by probiotics and paraprobiotics via the activation of dendritic cells. Although further detailed research is necessary in the future, probiotics and/or paraprobiotics are expected to be among the rational adjunctive options for the treatment of various viral diseases.
    Matched MeSH terms: Viruses/drug effects*
  3. Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, et al.
    Molecules, 2021 Jan 26;26(3).
    PMID: 33530290 DOI: 10.3390/molecules26030628
    The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
    Matched MeSH terms: Viruses/drug effects
  4. Ravichandran V, Jain A, Kumar KS, Rajak H, Agrawal RK
    Chem Biol Drug Des, 2011 Sep;78(3):464-70.
    PMID: 21615706 DOI: 10.1111/j.1747-0285.2011.01149.x
    A series of 1,3-thiazolidin-4-one derivatives were prepared by the reaction of respective aromatic amine, aromatic aldehyde, and thioglycolic acid in dry benzene/toluene. The newly synthesized compounds were characterized on the basis of elemental analysis, IR, (1) HNMR, and mass spectra. The newly synthesized final compounds were evaluated for their in vitro antibacterial, antifungal, and anti-viral activities. Preliminary results indicated that some of the compounds demonstrated antibacterial activity in the range of 7-13 μg/mL, antifungal activity in the range of 13-17 μg/mL, comparable with the standard drugs, ciprofloxacin and fluconazole. Structure-activity relationship studies revealed that the nature of the substituents at the 2 and 3 positions of the thiazolidinone nucleus had a significant impact on the in vitro antimicrobial and anti-viral activity of these classes of agents.
    Matched MeSH terms: Viruses/drug effects
  5. Moghadamtousi SZ, Nikzad S, Kadir HA, Abubakar S, Zandi K
    Mar Drugs, 2015 Jul;13(7):4520-38.
    PMID: 26204947 DOI: 10.3390/md13074520
    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.
    Matched MeSH terms: Respiratory Syncytial Viruses/drug effects
  6. Kua KP, Lee SWH
    Pharmacotherapy, 2017 Jun;37(6):755-769.
    PMID: 28423192 DOI: 10.1002/phar.1936
    BACKGROUND: Respiratory syncytial virus (RSV) is a common pathogen in infants with cystic fibrosis (CF). The use of palivizumab prophylaxis for RSV infection as the standard of care for infants with CF remains controversial.

    OBJECTIVE: To evaluate the efficacy of palivizumab in reducing the incidence of RSV hospitalization in children with CF who are younger than 2 years.

    METHODS: Four electronic databases (PubMed, Embase, CINAHL, and CENTRAL) were searched from inception until January 31, 2017, for clinical studies investigating the use of palivizumab in infants with CF aged less than 2 years. The primary outcome was hospitalization rate due to RSV infection. Secondary outcomes included hospitalization for respiratory illness, length of hospital stay, safety (adverse effects), and cost-effectiveness of palivizumab prophylaxis.

    RESULTS: The review included a total of 10 studies (six cohort studies, two before-and-after studies, one cross-sectional study, and one randomized controlled trial) involving 3891 patients with CF. Seven studies reported that palivizumab prophylaxis had a positive impact on the rate of RSV hospitalization. Five studies (n=3404) reported that palivizumab prophylaxis significantly reduced the rate of hospitalization due to RSV infection compared to no prophylaxis. One study (n=5) demonstrated patients with CF who received palivizumab had no RSV hospitalization. Another study showed infants with CF receiving palivizumab (n=117) had a lower risk of hospitalization for RSV infection compared with premature infants (gestational age < 35 completed weeks) who received palivizumab (n=4880).

    CONCLUSIONS: Evidence from the literature suggests that palivizumab may have a potential role in reducing RSV hospitalization in children aged less than 2 years with CF. Given the lack of overall data, additional research is warranted to better understand the efficacy and safety of prophylactic palivizumab in infants with CF.

    Matched MeSH terms: Respiratory Syncytial Viruses/drug effects
  7. Hafidh RR, Abdulamir AS, Abu Bakar F, Sekawi Z, Jahansheri F, Jalilian FA
    PMID: 26062546 DOI: 10.1186/s12906-015-0688-2
    New sources for discovering novel antiviral agents are desperately needed. The current antiviral products are both expensive and not very effective.
    Matched MeSH terms: Respiratory Syncytial Viruses/drug effects*
  8. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Mini Rev Med Chem, 2021;21(4):398-425.
    PMID: 33001013 DOI: 10.2174/1389557520666201001130114
    β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
    Matched MeSH terms: Viruses/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links