Displaying all 16 publications

Abstract:
Sort:
  1. Razis AFA, Shehzad MM, Usman S, Ali NB, Iqbal SZ, Naheed N, et al.
    PMID: 33276517 DOI: 10.3390/ijerph17238964
    A total of 779 samples of edible nuts (melon seeds, watermelon seeds, pumpkin seeds, and cantaloupe seeds) from Southern Punjab (Pakistan), were collected during the summer and the winter seasons. The natural occurrence of aflatoxins (AFs) and vitamin E (tocopherols) levels were investigated using HPLC. The results have shown that 180 (43.4%) of samples from the winter season and 122 (33.4%) samples from the summer season were found positive for AFs. Elevated average levels of total AFs (20.9 ± 3.10 μg/kg, dry weight) were observed in watermelon seeds without shell, and the lowest average amount (15.9 ± 3.60 μg/kg) were documented in melon seeds without shell samples from the winter season. An elevated average amount of total AFs 17.3 ± 1.50 μg/kg was found in pumpkin seeds available without a shell. The results have documented a significant difference in total AFs levels in edible seeds available with shells versus without shells (α = 0.05 & 0.01). The highest dietary intake of 6.30 μg/kg/day was found in female individuals from consuming pumpkin seeds (without shell) in the winter season. A value of 3.00 μg/kg/day was found in pumpkin seed without shell in the summer season in female individuals. The highest total tocopherol levels were 22.2 ± 7.70 ng/100 g in pumpkin seeds samples from the winter season and 14.5 ± 5.50 mg/100 g in melon seed samples from the summer season. The variation of total tocopherol levels in edible seeds among the winter and summer seasons showed a significant difference (p ≤ 0.0054), except watermelon seeds samples with non-significant differences (p ≥ 0.183).
    Matched MeSH terms: Vitamin E/metabolism*
  2. Sundram K, Nor RM
    Methods Mol Biol, 2002;186:221-32.
    PMID: 12013770
    Matched MeSH terms: Vitamin E/metabolism
  3. Chong TM, Abdullah MA, Fadzillah NM, Lai OM, Lajis NH
    Plant Cell Rep, 2004 Jul;22(12):951-8.
    PMID: 15067428
    The effects of medium strategies [maintenance (M), intermediary (G), and production (P) medium] on cell growth, anthraquinone (AQ) production, hydrogen peroxide (H2O2) level, lipid peroxidation, and antioxidant vitamins in Morinda elliptica cell suspension cultures were investigated. These were compared with third-stage leaf and 1-month-old callus culture. With P medium strategy, cell growth at 49 g l(-1), intracellular AQ content at 42 mg g(-1) DW, and H2O2 level at 9 micromol g(-1) FW medium were the highest as compared to the others. However, the extent of lipid peroxidation at 40.4 nmol g(-1) FW and total carotenoids at 13.3 mg g(-1) FW for cultures in P medium were comparable to that in the leaf, which had registered sevenfold lower AQ and 2.2-fold lower H2O2 levels. Vitamin C content at 30-120 microg g(-1) FW in all culture systems was almost half the leaf content. On the other hand, vitamin E content was around 400-500 microg g(-1) FW in 7-day-old cultures from all medium strategies and reduced to 50-150 microg g(-1) FW on day 14 and 21; as compared to 60 microg g(-1) FW in callus and 200 microg g(-1) FW in the leaf. This study suggests that medium strategies and cell growth phase in cell culture could influence the competition between primary and secondary metabolism, oxidative stresses and antioxidative measures. When compared with the leaf metabolism, these activities are dynamic depending on the types and availability of antioxidants.
    Matched MeSH terms: Vitamin E/metabolism*
  4. Fairus S, Nor RM, Cheng HM, Sundram K
    Am J Clin Nutr, 2006 Oct;84(4):835-42.
    PMID: 17023711
    BACKGROUND: The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues.

    OBJECTIVE: The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins.

    DESIGN: Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval.

    RESULTS: After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments.

    CONCLUSIONS: Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.

    Matched MeSH terms: Vitamin E/metabolism*
  5. Ismail NM, Abdul Ghafar N, Jaarin K, Khine JH, Top GM
    Int J Food Sci Nutr, 2000;51 Suppl:S79-94.
    PMID: 11271860
    The present study aims to examine the effects of a palm-oil-derived vitamin E mixture containing tocotrienol (approximately 70%) and tocopherol (approximately 30%) on plasma lipids and on the formation of atherosclerotic plaques in rabbits given a 2% cholesterol diet. Eighteen New Zealand White rabbits (2.2-2.8 kg) were divided into three groups; group 1 (control) was fed a normal diet, group 2 (AT) was fed a 2% cholesterol diet and group 3 (PV) was fed a 2% cholesterol diet with oral palm vitamin E (60 mg/kg body weight) given daily for 10 weeks. There were no differences in the total cholesterol and triacylglycerol levels between the AT and PV groups. The PV group had a significantly higher concentrations of HDL-c and a lower TC/HDL-c ratio compared to the AT group (P < 0.003). The aortic tissue content of cholesterol and atherosclerotic lesions were comparable in both the AT and PV groups. However, the PV group had a lower content of plasma and aortic tissue malondialdehyde (P < 0.005). Our findings suggest that despite a highly atherogenic diet, palm vitamin E improved some important plasma lipid parameters, reduced lipid peroxidation but did not have an effect on the atherosclerotic plaque formation.
    Matched MeSH terms: Vitamin E/metabolism*
  6. Khor HT, Ng TT
    Int J Food Sci Nutr, 2000;51 Suppl:S3-11.
    PMID: 11271854
    Male hamsters were fed on semi-synthetic diets containing commercial corn oil (CO), isolated corn oil triglycerides (COTG), COTG supplemented with 30 ppm of alpha-tocopherol (COTGTL) and COTG supplemented with 81 ppm of alpha-tocopherol (COTGTH) as the dietary lipid for 45 days. Male albino guinea pigs were fed on commercial chow pellets and treated with different dosages of tocopherol and tocotrienols intra-peritoneally for 6 consecutive days. Serum and liver were taken for analysis. Our results show that stripping corn oil of its unsaponifiable components resulted in COTG which yielded lower serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and raised high-density lipoprotein cholesterol (HDL-C) and serum triglycerides (TG) levels. These results indicate that the COTG with its fatty acids are responsible for the hypocholesterolemic effect exhibited by corn oil. However, supplementing the COTG diet with alpha-tocopherol (alpha-T) at 30 ppm significantly raised the serum TC, LDL-C and TG levels, but did not alter the HDL-C level, indicating that alpha-T is hypercholesterolemic. Supplementing the COTG diet with alpha-T at 81 ppm raised the serum TC level but to a lesser extent as compared to that obtained with 30-ppm alpha-T supplementation. The increased TC, in this case, was reflected mainly by an increased in HDL-C level as the LDL-C level was unchanged. The TG level was also raised but to a lesser extent than that obtained with a lower alpha-T supplementation. The liver HMG CoA reductase (HMGCR) activity was exhibited (56%) by the COTG as compared to CO. Supplementation of alpha-T at 30 ppm to the COTG diet resulted in further inhibition (76%) of the liver HMGCR activity. On the contrary, supplementation of alpha-T at 81 ppm to COTG diet resulted in a highly stimulatory effect (131%) on the liver HMGCR activity. Short-term studies with guinea pigs treated intra-peritoneally with alpha-T showed that at low dosage (5 mg) the HMGCR activity was inhibited by 46% whereas increasing the dosage of alpha-T to 20 mg yielded lesser inhibition (18%) as compared to that of the control. Further increase in the dosage of alpha-T to 50 mg actually resulted in 90% stimulation of the liver HMGCR activity as compared to the control. These results clearly indicate that the effect of alpha-T on HMGCR activity was dose-dependent. Treatment of the guinea pigs with 10 mg of tocotrienols (T3) resulted in 48% inhibition of the liver HMGCR activity. However, treatment with a mixture of 5 mg of alpha-T with 10 mg of T3 resulted in lesser inhibition (13%) of the liver HMGCR activity as compared to that obtained with 10 mg of T3. The above results indicate that the alpha-T is hypercholesterolemic in the hamster and its effect on liver HMGCR is dose-dependent. T3 exhibited inhibitory effect on liver HMGCR and alpha-T attenuated the inhibitory effect of T3 on liver HMGCR.
    Matched MeSH terms: Vitamin E/metabolism*
  7. Chiroma AA, Khaza'ai H, Abd Hamid R, Chang SK, Zakaria ZA, Zainal Z
    PLoS One, 2020;15(11):e0241112.
    PMID: 33232330 DOI: 10.1371/journal.pone.0241112
    Natural α-tocopherol (α-TCP), but not tocotrienol, is preferentially retained in the human body. α-Tocopherol transfer protein (α-TTP) is responsible for binding α-TCP for cellular uptake and has high affinity and specificity for α-TCP but not α-tocotrienol. The purpose of this study was to examine the modification of α-TTP together with other related vitamin E-binding genes (i.e., TTPA, SEC14L2, and PI-TPNA) in regulating vitamin E uptake in neuronal cells at rest and under oxidative stress. Oxidative stress was induced with H2O2 for an hour which was followed by supplementation with different ratios of α-TCP and tocotrienol-rich fraction (TRF) for four hours. The cellular levels of vitamin E were quantified to determine bioavailability at cellular levels. The expression levels of TTPA, SEC14L2, and PI-TPNA genes in 0% α-TCP were found to be positively correlated with the levels of vitamin E in resting neuronal cells. In addition, the regulation of all the above-mentioned genes affect the distribution of vitamin E in the neuronal cells. It was observed that, increased levels of α-TCP secretion occur under oxidative stress. Thus, our results showed that in conclusion vitamin E-binding proteins may be modified in the absence of α-TCP to produce tocotrienols (TCT), as a source of vitamin E. The current study suggests that the expression levels of vitamin E transport proteins may influence the cellular concentrations of vitamin E levels in the neuronal cells.
    Matched MeSH terms: Vitamin E/metabolism*
  8. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Jul;83(7):1964-1969.
    PMID: 29802733 DOI: 10.1111/1750-3841.14191
    Kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions stabilized by complexation of beta-cyclodextrin with sodium caseinate and Tween 20 have been shown to have higher bioaccessibility of vitamin E and total phenolic content than nonemulsified kenaf seed oil in the previous in vitro gastrointestinal digestion study. However, its oral bioavailability was unknown. Therefore, the aim of this study was to evaluate the rate of in vivo oral bioavailability of kenaf seed oil-in-water nanoemulsions in comparison with nonemulsified kenaf seed oil and kenaf seed oil macroemulsions during the 180 min of gastrointestinal digestion. Kenaf seed oil macroemulsions were produced by using conventional method. Kenaf seed oil-in-water nanoemulsions had shown improvement in the rate of absorption. At 180 min of digestion time, the total α-tocopherol bioavailability of kenaf seed oil nanoemulsions was increased by 1.7- and 1.4-fold, compared to kenaf seed oil and macroemulsion, respectively. Kenaf seed oil-in-water nanoemulsions were stable in considerably wide range of pH (>5 and <3), suggesting that it can be fortified into beverages within this pH range PRACTICAL APPLICATION: The production of kenaf seed oil-in-water nanoemulsions had provided a delivery system to encapsulate the kenaf seed oil, as well as enhanced the bioaccessibility and bioavailability of kenaf seed oil. Therefore, kenaf seed oil-in-water nanoemulsions exhibit a great potential application in nutraceutical fields.
    Matched MeSH terms: Vitamin E/metabolism
  9. Mohd Esa N, Abdul Kadir KK, Amom Z, Azlan A
    Food Chem, 2013 Nov 15;141(2):1306-12.
    PMID: 23790918 DOI: 10.1016/j.foodchem.2013.03.086
    Antioxidant activity of different rice extract and the effect on the levels of antioxidant enzyme activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), vitamin E, lipid peroxidation and liver enzymes in hyperlipidaemia rabbits were investigated. Germinated brown rice (GBR) has the highest antioxidant activity compared to white rice (WR) and brown rice (BR). All rice grains increased the activity of SOD and GPx. However, vitamin E levels increased only in the groups that received the BR and GBR diets. The reduction of lipid peroxidation levels and activity of hepatic enzymes (alanine transferase, ALT and aspartate transaminase, AST) were only significantly observed in the GBR group. In conclusion, GBR supplementation has the greatest impact on increasing antioxidant enzyme activity and vitamin E level and on reducing lipid peroxidation in hypercholesterolaemia rabbit, thereby preventing the formation of atherosclerotic plaques. Furthermore, GBR diet can also reduce the level of hepatic enzymes.
    Matched MeSH terms: Vitamin E/metabolism
  10. Jaarin K, Renuvathani M, Nafeeza MI, Gapor MT
    Int J Food Sci Nutr, 2000;51 Suppl:S31-41.
    PMID: 11271855
    The effect of palm vitamin E on the healing of ethanol-induced gastric lesions and various biochemical parameters were investigated. The study was divided into two phases. In the first phase of the study, 42 rats of Sprague Dawley species (200-250 gm weight) were randomly divided into two groups fed with a normal diet (control) or palm vitamin E enriched diet (150 mg/kg) for 3 weeks. The rats were killed after 3 weeks of feeding. Gastric tissue contents of malondialdehyde (MDA), prostaglandin E2 and acid were measured. In the second phase of the study 42 rats were divided into two groups. Group 1 was fed normal rat pellets (control) and group 2 was fed palm vitamin E enriched pellets (150 mg/kg food) for 3 weeks. After 3 weeks of feeding gastric mucosal injury was induced by an orogastric tube administration of 0.5 ml 100% ethanol. The rats were killed at 1 hour, 4 hours and 1 week after ethanol exposure for semiquantitative determination of ulcer index and gastric acid concentration. Gastric tissue MDA and mucus were measured only at 1 week after ethanol exposure. In the first phase of the study we found that palm vitamin E only caused a significant reduction in gastric MDA. However, it showed no significant effects on prostaglandin E2 and gastric acid concentration. In the second phase of the study, the mean ulcer index of palm vitamin E supplemented group killed after 1 week of ethanol exposure was significantly lower compared to the respective control. However, there was no significant difference in ulcer index in rats killed at 1 hour and 24 hours after ethanol exposure. The gastric acid concentration was significantly higher in the group treated with palm vitamin E killed 1 week after ethanol exposure compared to control. The gastric tissue MDA was significantly lower in the palm vitamin E supplemented group compared to control. There was no significant difference in gastric mucus content of the both groups. The ulcer healing which occurred in the presence of a high gastric acid suggests that the effect of palm vitamin E on the healing of gastric lesions was not mediated via a reduction in gastric acid nor was it mediated through increasing prostaglandin E2 or mucus production. The most probable mechanism is via reducing lipid peroxidation as reflected by a significant decreased in gastric tissue MDA content.
    Matched MeSH terms: Vitamin E/metabolism
  11. Tan SW, Israf Ali DAB, Khaza'ai H, Wong JW, Vidyadaran S
    Cell Immunol, 2020 11;357:104200.
    PMID: 32979761 DOI: 10.1016/j.cellimm.2020.104200
    Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 μg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p 
    Matched MeSH terms: Vitamin E/metabolism
  12. Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ
    PMID: 25886747 DOI: 10.1186/s12906-015-0590-y
    To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.
    Matched MeSH terms: Vitamin E/metabolism
  13. Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S
    J Physiol Biochem, 2017 Feb;73(1):59-65.
    PMID: 27743340 DOI: 10.1007/s13105-016-0524-2
    Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p 
    Matched MeSH terms: Vitamin E/metabolism
  14. Tan PY, Mitra SR
    Lifestyle Genom, 2020;13(2):84-98.
    PMID: 32101872 DOI: 10.1159/000505662
    BACKGROUND: Computing polygenic risk scores (PRS) to predict the degree of risk for obesity may contribute to weight management programs strategically.

    OBJECTIVES: To investigate the combined effect of FTO rs9930501, rs9930506, and rs9932754 and ADRB2 rs1042713 and rs1042714 using PRS on (1) the odds of obesity and (2) post-intervention differences in dietary, anthropometric, and cardiometabolic parameters in response to high-protein calorie-restricted, high-vitamin E, high-fiber (Hipcref) diet intervention in Malaysian adults.

    METHODS: Both a cross-sectional study (n = 178) and a randomized controlled trial (RCT) (n = 128) were conducted to test the aforementioned objectives. PRS was computed as the weighted sum of the risk alleles possessed by each individual participant. Participants were stratified into first (PRS 0-0.64), second (PRS 0.65-3.59), and third (PRS 3.60-8.18) tertiles.

    RESULTS: The third tertile of PRS was associated with significantly higher odds of obesity: 2.29 (95% CI = 1.11-4.72, adjusted p = 0.025) compared to the first tertile. Indians (3.9 ± 0.3) had significantly higher PRS compared to Chinese (2.1 ± 0.4) (p = 0.010). In the RCT, a greater reduction in high-sensitivity C-reactive protein (hsCRP) levels was found in second and third tertiles after Hipcref diet intervention compared to the control diet (p interaction = 0.048).

    CONCLUSION: Higher PRS was significantly associated with increased odds of obesity. Individuals with higher PRS had a significantly greater reduction in hsCRP levels after Hipcref diet compared to the control diet.

    Matched MeSH terms: Vitamin E/metabolism
  15. Siti HN, Kamisah Y, Kamsiah J
    Vascul Pharmacol, 2015 Aug;71:40-56.
    PMID: 25869516 DOI: 10.1016/j.vph.2015.03.005
    The concept of mild chronic vascular inflammation as part of the pathophysiology of cardiovascular disease, most importantly hypertension and atherosclerosis, has been well accepted. Indeed there are links between vascular inflammation, endothelial dysfunction and oxidative stress. However, there are still gaps in our understanding regarding this matter that might be the cause behind disappointing results of antioxidant therapy for cardiovascular risk factors in large-scale long-term randomised controlled trials. Apart from the limitations of our knowledge, limitations in methodology and assessment of the body's endogenous and exogenous oxidant-antioxidant status are a serious handicap. The pleiotropic effects of antioxidant and anti-inflammation that are shown by some well-established antihypertensive agents and statins partly support the idea of using antioxidants in vascular diseases as still relevant. This review aims to provide an overview of the links between oxidative stress, vascular inflammation, endothelial dysfunction and cardiovascular risk factors, importantly focusing on blood pressure regulation and atherosclerosis. In view of the potential benefits of antioxidants, this review will also examine the proposed role of vitamin C, vitamin E and polyphenols in cardiovascular diseases as well as the success or failure of antioxidant therapy for cardiovascular diseases in clinical trials.
    Matched MeSH terms: Vitamin E/metabolism
  16. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Vitamin E/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links