Displaying all 6 publications

Abstract:
Sort:
  1. Joanne S, Vythilingam I, Yugavathy N, Leong CS, Wong ML, AbuBakar S
    Acta Trop, 2015 Aug;148:38-45.
    PMID: 25899523 DOI: 10.1016/j.actatropica.2015.04.003
    Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system.
    Matched MeSH terms: Wolbachia/genetics*
  2. Ahmad NA, Mancini MV, Ant TH, Martinez J, Kamarul GMR, Nazni WA, et al.
    Philos Trans R Soc Lond B Biol Sci, 2021 02 15;376(1818):20190809.
    PMID: 33357050 DOI: 10.1098/rstb.2019.0809
    Aedes aegypti mosquitoes carrying the wAlbB Wolbachia strain show a reduced capacity to transmit dengue virus. wAlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that wAlbB releases can be an effective dengue control strategy, the long-term success depends on wAlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia-host coevolution in the field. Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected wAlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that wAlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti, and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Matched MeSH terms: Wolbachia/genetics*
  3. Ali H, Muhammad A, Bala NS, Wang G, Chen Z, Peng Z, et al.
    Mol Phylogenet Evol, 2018 10;127:1000-1009.
    PMID: 29981933 DOI: 10.1016/j.ympev.2018.07.003
    Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including China's Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajima's D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.
    Matched MeSH terms: Wolbachia/genetics*
  4. Noor Afizah A, Roziah A, Nazni WA, Lee HL
    Indian J Med Res, 2015 Aug;142(2):205-10.
    PMID: 26354218 DOI: 10.4103/0971-5916.164259
    Wolbachia-based vector control strategies have been proposed as a mean to augment the existing measures for controlling dengue vector. Prior to utilizing Wolbachia in novel vector control strategies, it is crucial to understand the Wolbachia-mosquito interactions. Many studies have only focused on the prevalence of Wolbachia in female Aedes albopictus with lack of attention on Wolbachia infection on the male Ae. albopictus which also affects the effective expression of Wolbachia induced- cytoplasmic incompatibility (CI). In this study, field surveys were conducted to screen for the infection status of Wolbachia in female and male Ae. albopictus from various habitats including housing areas, islands and seashore.
    Matched MeSH terms: Wolbachia/genetics
  5. Lau YL, Lee WC, Xia J, Zhang G, Razali R, Anwar A, et al.
    Parasit Vectors, 2015;8:451.
    PMID: 26350613 DOI: 10.1186/s13071-015-1064-2
    Efforts to completely eradicate lymphatic filariasis from human population may be challenged by the emergence of Brugia pahangi as another zoonotic lymphatic filarial nematode. In this report, a genomic study was conducted to understand this species at molecular level.
    Matched MeSH terms: Wolbachia/genetics
  6. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al.
    Curr Biol, 2019 Dec 16;29(24):4241-4248.e5.
    PMID: 31761702 DOI: 10.1016/j.cub.2019.11.007
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
    Matched MeSH terms: Wolbachia/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links