Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Roslan MA, Ngui R, Vythilingam I, Wan Sulaiman WY
    J Vector Ecol, 2022 Dec;47(2):142-152.
    PMID: 36314668 DOI: 10.52707/1081-1710-47.2.142
    The study assessed the distribution of Malaysian Ae. albopictus adults associated with Wolbachia detection in low-rise residential areas using a modified sticky ovitrap (MSO). The relationship between Ae. albopictus and climatological parameters were also determined. Fifty-two weeks of surveillance using 273 MSOs were conducted in four installation areas of eleven sampling sites. Specimens were subjected to PCR using wsp-specific primers for Wolbachia detection. The relationship between climatological parameters and Ae. albopictus captured were analyzed using Spearman rank correlation coefficient test. The majority of Ae. albopictus were captured in residential houses (87%), followed by playgrounds or parks (11.5%), guardhouses (1%), and community halls (0.5%). Most of the specimens (92%) were superinfected with wAlbA and wAlbB strains. A positive correlation with no significant association was found for rainfall (r = 0.015, P = 0.072), relative humidity (r = 0.005, P = 0.526), minimum temperature (r = 0.005, P = 0.516), and mean temperature (r = 0.003, P = 0.689). MSO effectively captured a high number of Ae. albopictus that was determined to be the predominant mosquito species found in low-rise residential areas. The adult collection is not only influenced by climatological parameters but also by other factors, including environmental conditions and general sanitation status.
    Matched MeSH terms: Wolbachia*
  2. Chrostek E, Hurst GDD, McGraw EA
    Curr Biol, 2020 01 06;30(1):R30-R32.
    PMID: 31910374 DOI: 10.1016/j.cub.2019.11.046
    Vector-borne viral diseases pose an urgent public health challenge, particularly in the tropics. Field releases of mosquitoes carrying bacterial symbionts that reduce vector competence are ongoing in Kuala Lumpur, Malaysia. Early results show that wAlbB Wolbachia can persist in mosquitoes in urban settings and decrease dengue incidence in humans.
    Matched MeSH terms: Wolbachia*
  3. Noor Afizah A, Roziah A, Nazni WA, Lee HL
    Indian J Med Res, 2015 Aug;142(2):205-10.
    PMID: 26354218 DOI: 10.4103/0971-5916.164259
    Wolbachia-based vector control strategies have been proposed as a mean to augment the existing measures for controlling dengue vector. Prior to utilizing Wolbachia in novel vector control strategies, it is crucial to understand the Wolbachia-mosquito interactions. Many studies have only focused on the prevalence of Wolbachia in female Aedes albopictus with lack of attention on Wolbachia infection on the male Ae. albopictus which also affects the effective expression of Wolbachia induced- cytoplasmic incompatibility (CI). In this study, field surveys were conducted to screen for the infection status of Wolbachia in female and male Ae. albopictus from various habitats including housing areas, islands and seashore.
    Matched MeSH terms: Wolbachia/genetics; Wolbachia/isolation & purification*; Wolbachia/virology
  4. Lee JM, Yek SH, Wilson RF, Rahman S
    Acta Trop, 2020 Dec;212:105683.
    PMID: 32888935 DOI: 10.1016/j.actatropica.2020.105683
    Understanding the diversity and dynamics of the microbiota within the mosquito holobiome is of great importance to apprehend how the microbiota modulates various complex processes and interactions. This study examined the bacterial composition of Aedes albopictus across land use type and mosquito sex in the state of Selangor, Malaysia using 16S rRNA sequencing. The bacterial community structure in mosquitoes was found to be influenced by land use type and mosquito sex, with the environment and mosquito diet respectively identified to be the most likely sources of microbes. We found that approximately 70% of the microbiota samples were dominated by Wolbachia and removing Wolbachia from analyses revealed the relatively even composition of the remaining bacterial microbiota. Furthermore, microbial interaction network analysis highlighted the prevalence of co-exclusionary patterns in all networks regardless of land use and mosquito sex, with Wolbachia exhibiting co-exclusionary interactions with other residential bacteria such as Xanthomonas, Xenophilus and Zymobacter.
    Matched MeSH terms: Wolbachia/isolation & purification
  5. Ahmad NA, Vythilingam I, Lim YAL, Zabari NZAM, Lee HL
    Am J Trop Med Hyg, 2017 Jan 11;96(1):148-156.
    PMID: 27920393 DOI: 10.4269/ajtmh.16-0516
    Wolbachia-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing Wolbachia as a novel vector control strategy, it is crucial to understand the Wolbachia-mosquito interactions. In this study, field surveys were conducted to screen for the infection status of Wolbachia in field-collected Aedes albopictus The effects of Wolbachia in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of Wolbachia-infected field-collected Ae. albopictus was estimated to be 98.6% (N = 142) for females and 95.1% (N = 102) for males in the population studied. The Ae. albopictus were naturally infected with both wAlbA and wAlbB strains. We also found that the native Wolbachia has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs.
    Matched MeSH terms: Wolbachia/isolation & purification*
  6. Mak JW
    Trop Biomed, 2004 Dec;21(2):27-38.
    PMID: 16493396
    Diethylcarbamazine citrate (DEC) has been used for treatment and control of lymphatic filariasis since the 1950s. Although this remarkable drug is still useful and modified strategies in its usage have been developed, a number of newer antifilarial compounds are now available. Numerous field trials evaluating their efficacy in the control of lymphatic filariasis have been conducted. In particular, ivermectin (IVM), albendazole (ALB), and DEC have been tested singly and in combinations and the results of such field studies should be evaluated. While most of the studies were based on efficacy in the clearance of microfilaraemia, a few clinical trials evaluated the adulticidal activity of these compounds. Some antibiotics are effective in killing Wolbachia bacteria symbionts of filarial worms, but their role in the chemotherapy of lymphatic filariasis is still undefined. This review of randomised controlled field studies and randomised controlled clinical trials with these compounds will summarise the findings and give recommendations on their appropriate use for the control and treatment of lymphatic filariasis.
    Matched MeSH terms: Wolbachia
  7. Joanne S, Vythilingam I, Yugavathy N, Leong CS, Wong ML, AbuBakar S
    Acta Trop, 2015 Aug;148:38-45.
    PMID: 25899523 DOI: 10.1016/j.actatropica.2015.04.003
    Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system.
    Matched MeSH terms: Wolbachia/genetics*; Wolbachia/physiology
  8. Ali H, Muhammad A, Bala NS, Wang G, Chen Z, Peng Z, et al.
    Mol Phylogenet Evol, 2018 10;127:1000-1009.
    PMID: 29981933 DOI: 10.1016/j.ympev.2018.07.003
    Wolbachia pipientis is a diverse, ubiquitous and most prevalent intracellular bacterial group of alpha-Proteobacteria that is concerned with many biological processes in arthropods. The coconut hispine beetle (CHB), Brontispa longissima (Gestro) is an economically important pest of palm cultivation worldwide. In the present study, we comprehensively surveyed the Wolbachia-infection prevalence and mitochondrial DNA (mtDNA) polymorphism in CHB from five different geographical locations, including China's Mainland and Taiwan, Vietnam, Thailand, Malaysia and Indonesia. A total of 540 sequences were screened in this study through three different genes, i.e., cytochrome oxidase subunit I (COI), Wolbachia outer surface protein (wsp) and multilocus sequencing type (MLST) genes. The COI genetic divergence ranges from 0.08% to 0.67%, and likewise, a significant genetic diversity (π = 0.00082; P = 0.049) was noted within and between all analyzed samples. In the meantime, ten different haplotypes (H) were characterized (haplotype diversity = 0.4379) from 21 different locations, and among them, H6 (46 individuals) have shown a maximum number of population clusters than others. Subsequently, Wolbachia-prevalence results indicated that all tested specimens of CHB were found positive (100%), which suggested that CHB was naturally infected with Wolbachia. Wolbachia sequence results (wsp gene) revealed a high level of nucleotide diversity (π = 0.00047) under Tajima's D test (P = 0.049). Meanwhile, the same trend of nucleotide diversity (π = 0.00041) was observed in Wolbachia concatenated MLST locus. Furthermore, phylogenetic analysis (wsp and concatenated MLST genes) revealed that all collected samples of CHB attributed to same Wolbachia B-supergroup. Our results strongly suggest that Wolbachia bacteria and mtDNA were highly concordant with each other and Wolbachia can affect the genetic structure and diversity within the CHB populations.
    Matched MeSH terms: Wolbachia/classification; Wolbachia/genetics*
  9. Lau YL, Lee WC, Xia J, Zhang G, Razali R, Anwar A, et al.
    Parasit Vectors, 2015;8:451.
    PMID: 26350613 DOI: 10.1186/s13071-015-1064-2
    Efforts to completely eradicate lymphatic filariasis from human population may be challenged by the emergence of Brugia pahangi as another zoonotic lymphatic filarial nematode. In this report, a genomic study was conducted to understand this species at molecular level.
    Matched MeSH terms: Wolbachia/genetics; Wolbachia/isolation & purification
  10. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al.
    Curr Biol, 2019 Dec 16;29(24):4241-4248.e5.
    PMID: 31761702 DOI: 10.1016/j.cub.2019.11.007
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
    Matched MeSH terms: Wolbachia/genetics; Wolbachia/metabolism*
  11. Mancini MV, Herd CS, Ant TH, Murdochy SM, Sinkins SP
    PLoS Negl Trop Dis, 2020 Mar;14(3):e0007926.
    PMID: 32155143 DOI: 10.1371/journal.pntd.0007926
    The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.
    Matched MeSH terms: Wolbachia/growth & development*; Wolbachia/isolation & purification
  12. Lefoulon E, Bain O, Makepeace BL, d'Haese C, Uni S, Martin C, et al.
    PeerJ, 2016;4:e1840.
    PMID: 27069790 DOI: 10.7717/peerj.1840
    Wolbachia is an alpha-proteobacterial symbiont widely distributed in arthropods. Since the identification of Wolbachia in certain animal-parasitic nematodes (the Onchocercidae or filariae), the relationship between arthropod and nematode Wolbachia has attracted great interest. The obligate symbiosis in filariae, which renders infected species susceptible to antibiotic chemotherapy, was held to be distinct from the Wolbachia-arthropod relationship, typified by reproductive parasitism. While co-evolutionary signatures in Wolbachia-arthropod symbioses are generally weak, reflecting horizontal transmission events, strict co-evolution between filariae and Wolbachia has been reported previously. However, the absence of close outgroups for phylogenetic studies prevented the determination of which host group originally acquired Wolbachia. Here, we present the largest co-phylogenetic analysis of Wolbachia in filariae performed to date including: (i) a screening and an updated phylogeny of Wolbachia; (ii) a co-phylogenetic analysis; and (iii) a hypothesis on the acquisition of Wolbachia infection. First, our results show a general overestimation of Wolbachia occurrence and support the hypothesis of an ancestral absence of infection in the nematode phylum. The accuracy of supergroup J is also underlined. Second, although a global pattern of coevolution remains, the signal is derived predominantly from filarial clades associated with Wolbachia in supergroups C and J. In other filarial clades, harbouring Wolbachia supergroups D and F, horizontal acquisitions and secondary losses are common. Finally, our results suggest that supergroup C is the basal Wolbachia clade within the Ecdysozoa. This hypothesis on the origin of Wolbachia would change drastically our understanding of Wolbachia evolution.
    Matched MeSH terms: Wolbachia
  13. Arham AF, Amin L, Mustapa MAC, Mahadi Z, Arham AF, Yaacob M, et al.
    Data Brief, 2020 Oct;32:106262.
    PMID: 32944607 DOI: 10.1016/j.dib.2020.106262
    Perceived Benefits and Risks: A survey data set towards Wolbachia-infected Aedes Mosquitoes in the Klang Valley, Malaysia. Introduction: The paper presents data collected using measures of perceived benefits, perceived risks, trust in key players, attitude towards nature versus material, attitude towards technology, religiosity, and attitude towards the Wolbachia-infected Aedes mosquitoes (WiAM) technique. The validated questionnaires were used to randomly survey targeted stakeholders in the Klang Valley, Malaysia, who had been asked to voluntarily participate in face-to-face interviews. Completed questionnaires were received from 399 respondents (adults above 18 years old) and comprised two stakeholder groups: scientists (n = 202), and the public (n = 197). The detailed findings serve numerous opportunities to examine the social acceptance of Wolbachia-infected Aedes mosquitoes, to ensure the development of policy and action plans, and to encourage further study by other researchers interested in the measures and data presented.
    Matched MeSH terms: Wolbachia
  14. Allman MJ, Fraser JE, Ritchie SA, Joubert DA, Simmons CP, Flores HA
    Insects, 2020 Oct 27;11(11).
    PMID: 33120915 DOI: 10.3390/insects11110735
    The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia's negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
    Matched MeSH terms: Wolbachia
  15. Lee HL, Rohani A, Khadri MS, Nazni WA, Rozilawati HA, Nurulhusna AH, et al.
    MyJurnal
    Dengue is a serious mosquito borne disease common in tropical and sub-tropical countries including Malaysia. There is at present a lack of specific treatment and an effective tetravalent vaccine against dengue. The control of dengue depends solely on the suppression of the two most important vectors namely, Aedes aegypti and Ae albopictus. Despite intensive and extensive control efforts by health agencies, the disease continues to spread. This paper updates various innovations on control of dengue vectors. Gene-based sterile insect technique using the RIDL technology for both Aedes aegypti & Ae albopictus control has now been actively researched and field trials are pursued to evaluate the effectiveness of the technology. The release of Wolbachia-infected Ae aegypti is another dengue control innovation. The infected mosquito cannot support development of dengue virus and has shorter life span. Other innovations include: auto-dissemination of insect control agents using ovitrap, autocidal adult and larva trap, outdoor residual spraying, insecticidal paint and biocontrol agent. In other innovation, outbreak prediction capability is enhanced by developing model based on environmental data and analysis utilising neural network.
    Matched MeSH terms: Wolbachia
  16. Ong SQ
    Sains Malaysiana, 2016;45:777-785.
    Dengue is a major issue in Malaysia as the dramatic emerge of infection. Yet an effective vaccine or medicine is not
    yet available, although many attempts are undergoing. Dengue vector control is still considered the most effective way
    for controlling and preventing the transmission of dengue virus. Nonetheless, as the conventional approaches are less
    successful in managing the dengue transmission, it is time to review the current applied and other available approaches.
    Current dengue vector relied greatly on the chemical approach as space treatment either thermal or ULV fogging, however,
    the approach seem like under the expectation. Beside space treatment, new control methods for example biological
    control (bacterium Bacillus thuringiensis, predatory mosquito Toxorhynchites) and attractive trap were carried out
    at certain location of Malaysia. Moreover, new emerged approaches such as mass release of genetic modification or
    artificially Wolbachia infected male dengue vector for the objective of generating sterile offspring when mate with
    wild population is urge to be tested in Malaysia, although concerns have to be taken before the actual mass release. In
    conclusion, control of dengue vector shall not consist exclusively for a single approach, neither genetic modification
    of artificially Wolbachia infected technique, nor the conventional insecticidal treatment. It should, however, comprise
    of the environment management as the fundamental approach, a well-planned integrated control program and a good
    cooperation among the organization.
    Matched MeSH terms: Wolbachia
  17. Hornett EA, Charlat S, Wedell N, Jiggins CD, Hurst GD
    Curr Biol, 2009 Oct 13;19(19):1628-31.
    PMID: 19747825 DOI: 10.1016/j.cub.2009.07.071
    Sex ratios are subject to distortion by a range of inherited parasites. Although it has been predicted that the presence of these elements will result in spatial and temporal variation in host sex ratio, testing of this hypothesis has been constrained by availability of historical data. We here determine spatial and temporal variation in sex ratio in a interaction between a butterfly and male-killing Wolbachia bacteria by assaying infection presence in museum specimens, and from this inferring infection prevalence and phenotype in historical populations. Comparison of contemporary and museum samples revealed profound change in four of five populations examined. Two populations become extremely female biased, associated with spread of the male-killer bacterium. One evolved from extremely female biased to a sex ratio near parity, resulting from the infection losing male-killing activity. The final population fluctuated widely in sex ratio, associated with varying frequency of the male killer. We conclude that asynchronous invasion and decline of sex-ratio distorters combines with the evolution of host suppressors to produce a rapidly changing mosaic of sex ratio. As a consequence, the reproductive ecology of the host species is likely to be fundamentally altered over short time scales. Further, the study demonstrates the utility of museum specimens as "silent witnesses" of evolutionary change.
    Matched MeSH terms: Wolbachia*
  18. Joanne S, Vythilingam I, Teoh BT, Leong CS, Tan KK, Wong ML, et al.
    Trop Med Int Health, 2017 09;22(9):1154-1165.
    PMID: 28653334 DOI: 10.1111/tmi.12918
    OBJECTIVE: To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes.

    METHODS: Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries.

    RESULTS: Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4.

    CONCLUSION: Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status.

    Matched MeSH terms: Wolbachia*
  19. Ahmad NA, Mancini MV, Ant TH, Martinez J, Kamarul GMR, Nazni WA, et al.
    Philos Trans R Soc Lond B Biol Sci, 2021 02 15;376(1818):20190809.
    PMID: 33357050 DOI: 10.1098/rstb.2019.0809
    Aedes aegypti mosquitoes carrying the wAlbB Wolbachia strain show a reduced capacity to transmit dengue virus. wAlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that wAlbB releases can be an effective dengue control strategy, the long-term success depends on wAlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia-host coevolution in the field. Here, wAlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a wAlbB laboratory colony. The wAlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected wAlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that wAlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti, and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
    Matched MeSH terms: Wolbachia/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links