Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Md-Lasim A, Mohd-Taib FS, Abdul-Halim M, Mohd-Ngesom AM, Nathan S, Md-Nor S
    PMID: 34502012 DOI: 10.3390/ijerph18179411
    Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with other pathogenic bacteria. We review the role of the host-microbiota in determining the synanthropic interaction of Leptospira sp. with other bacteria, thus creating a suitable condition for the leptospira to survive and persist successfully. We also discuss the biotic and abiotic factors that amplify the viability of Leptospira in the environment. The coinfection of leptospira with pathogenic bacteria has rarely been reported, potentially contributing to a lack of awareness. Therefore, the occurrence of leptospirosis coinfection may complicate diagnosis, long-lasting examination, and mistreatment that could lead to mortality. Identifying the presence of leptospirosis with other bacteria through metagenomic analysis could reveal possible coinfection. In conclusion, the occurrence of leptospirosis with other diseases should be of concern and may depend on the success of the transmission and severity of individual infections. Medical practitioners may misdiagnose the presence of multiple infections and should be made aware of and receive adequate training on appropriate treatment for leptospirosis patients. Physicians could undertake a more targeted approach for leptospirosis diagnosis by considering other symptoms caused by the coinfected bacteria; thus, more specific treatment could be given.
    Matched MeSH terms: Zoonoses/epidemiology
  2. Lim VK
    Malays J Pathol, 2011 Jun;33(1):1-5.
    PMID: 21874744 MyJurnal
    Leptospirosis is a re-emerging zoonotic infection. In developing countries large outbreaks have occurred in urban slums and following floods. Individuals from developed nations are also now more frequently exposed to the infection as a result of international travel and greater participation in certain outdoor recreational activities. Leptospirosis remains a diagnostic challenge since it often presents as a non-specific febrile event and laboratory diagnosis is still currently inadequate. Rapid tests may not be sufficiently sensitive in early disease and culture facilities are not widely available. A severe pulmonary haemorrhagic form of the infection is increasingly being encountered in many countries including Malaysia. The control of leptospirosis is largely dependent on general hygienic measures and rodent control. An effective human vaccine is still not available. There remains much that is unknown about this disease and there is scope and opportunity for good quality research.
    Matched MeSH terms: Zoonoses/epidemiology
  3. Tan DS
    Malays J Pathol, 1981 Aug;4:19-27.
    PMID: 7186600
    Matched MeSH terms: Zoonoses/epidemiology*
  4. Borzée A, McNeely J, Magellan K, Miller JRB, Porter L, Dutta T, et al.
    Trends Ecol Evol, 2020 12;35(12):1052-1055.
    PMID: 33097287 DOI: 10.1016/j.tree.2020.10.001
    Zoonosis-based epidemics are inevitable unless we revisit our relationship with the natural world, protect habitats, and regulate wildlife trade, including live animals and non-sustenance products. To prevent future zoonoses, governments must establish effective legislation addressing wildlife trade, protection of habitats, and reduction of the wildlife-livestock-human interface.
    Matched MeSH terms: Zoonoses/epidemiology
  5. Bisseru B
    Med J Malaya, 1968 Sep;23(1):35-40.
    PMID: 4237554
    Matched MeSH terms: Zoonoses/epidemiology*
  6. Rudnick A
    J Med Entomol, 1965 Jun;2(2):203-8.
    PMID: 5827577
    Matched MeSH terms: Zoonoses/epidemiology*
  7. Talukdar P, Dutta D, Ghosh E, Bose I, Bhattacharjee S
    Appl Biochem Biotechnol, 2023 Apr;195(4):2451-2462.
    PMID: 36656534 DOI: 10.1007/s12010-022-04300-0
    Viral diseases are causing mayhem throughout the world. One of the zoonotic viruses that have emerged as a potent threat to community health in the past few decades is Nipah virus. Nipah viral sickness is a zoonotic disease whose main carrier is bat. This disease is caused by Nipah virus (NiV). It belongs to the henipavirous group and of the family paramyxoviridae. Predominantly Pteropus spp. is the carrier of this virus. It was first reported from the Kampung Sungai Nipah town of Malaysia in 1998. Human-to-human transmission can also occur. Several repeated outbreaks were reported from South and Southeast Asia in the recent past. In humans, the disease is responsible for rapid development of acute illness, which can result in severe respiratory illness and serious encephalitis. Therefore, this calls for an urgent need for health authorities to conduct clinical trials to establish possible treatment regimens to prevent any further outbreaks.
    Matched MeSH terms: Zoonoses/epidemiology
  8. Mohd Zain SN, Basáñez MG
    Trends Parasitol, 2018 05;34(5):356-358.
    PMID: 29358040 DOI: 10.1016/j.pt.2017.12.009
    We share the insights from a successful collaboration in organizing and implementing an international scientific capacity-building workshop in Malaysia titled Mathematical Modelling of Neglected Infectious Diseases: Capacity Building in Southeast Asia. This workshop focused on the delivery of technical know-how and on essential soft skills related to effective grant proposal writing and networking.
    Matched MeSH terms: Zoonoses/epidemiology
  9. Sato S, Tojo B, Hoshi T, Minsong LIF, Kugan OK, Giloi N, et al.
    PMID: 31426380 DOI: 10.3390/ijerph16162954
    Plasmodium knowlesi (Pk) is a malaria parasite that naturally infects macaque monkeys in Southeast Asia. Pk malaria, the zoonosis transmitted from the infected monkeys to the humans by Anopheles mosquito vectors, is now a serious health problem in Malaysian Borneo. To create a strategic plan to control Pk malaria, it is important to estimate the occurrence of the disease correctly. The rise of Pk malaria has been explained as being due to ecological changes, especially deforestation. In this research, we analysed the time-series satellite images of MODIS (MODerate-resolution Imaging Spectroradiometer) of the Kudat Peninsula in Sabah and created the "Pk risk map" on which the Land-Use and Land-Cover (LULC) information was visualised. The case number of Pk malaria of a village appeared to have a correlation with the quantity of two specific LULC classes, the mosaic landscape of oil palm groves and the nearby land-use patches of dense forest, surrounding the village. Applying a Poisson multivariate regression with a generalised linear mixture model (GLMM), the occurrence of Pk malaria cases was estimated from the population and the quantified LULC distribution on the map. The obtained estimations explained the real case numbers well, when the contribution of another risk factor, possibly the occupation of the villagers, is considered. This implies that the occurrence of the Pk malaria cases of a village can be predictable from the population of the village and the LULC distribution shown around it on the map. The Pk risk map will help to assess the Pk malaria risk distributions quantitatively and to discover the hidden key factors behind the spread of this zoonosis.
    Matched MeSH terms: Zoonoses/epidemiology
  10. Nga VT, Ngoc TU, Minh LB, Ngoc VTN, Pham VH, Nghia LL, et al.
    Eur J Clin Microbiol Infect Dis, 2019 Jun;38(6):1047-1058.
    PMID: 30806904 DOI: 10.1007/s10096-019-03505-2
    In recent decades, exceeding 60% of infectious cases in human beings are originated from pathogenic agents related to feral or companion animals. This figure continues to swiftly increase due to excessive exposure between human and contaminated hosts by means of applying unhygienic farming practices throughout society. In Asia countries-renowned for lax regulation towards animal-trading markets-have experienced tremendous outbreaks of zoonotic diseases every year. Meanwhile, various epidemic surges were first reported in the residential area of China-one of the largest distributor of all animal products on the planet. Some noticeable illnesses comprising of A/H5N1 or H7N9-known as avian influenza which transmitted from poultry and also wild birds-have caused inevitable disquiet among inhabitants. Indeed, poultry farming industry in China has witnessed dynamic evolution for the past two decades, both in quantity and degree of output per individual. Together with this pervasive expansion, zoonotic diseases from poultry have incessantly emerged as a latent threat to the surrounding residents in entire Asia and also European countries. Without strict exporting legislation, Vietnam is now facing the serious problem in terms of poultry distribution between the two countries' border. Even though several disease investigations have been conducted by many researchers, the disease epidemiology or transmission methods among people remained blurred and need to be further elucidated. In this paper, our aim is to provide a laconic review of common zoonotic diseases spread in Vietnam, outstanding cases and several factors predisposing to this alarming situation.
    Matched MeSH terms: Zoonoses/epidemiology*
  11. Muul I
    Science, 1970 Dec 18;170(3964):1275-9.
    PMID: 5479006
    Insufficient use has been made of ecological data concerning potential hosts in studies to determine the life cycles of zoonotic parasites and pathogens. Factors such as the geographical distribution of hosts, the altitudes at which they live, their affinities for specific habitats, their vertical distribution within the habitat, and the periodicity of their activities have bearing on the hosts' predisposition to involvement in disease cycles. Diets and feeding habits may determine the likelihood of acquiring infection. Reproductive characteristics determine whether a species is suitable as a reservoir or as an amplifying host. Behavioral factors, such as selection of a particular kind of nest site, may also predispose the involvement of the host with parasites and pathogens. Behavior patterns may determine the maximum population densities of hosts. Estimates of population sizes, of relative abundances of species, and of the involvement of species in disease cycles may be strongly influenced by the collecting and sampling methods that are used and also by the behavioral response of the mammals toward collecting devices, such as traps.
    Matched MeSH terms: Zoonoses/epidemiology*
  12. Cheong WH, Ben Omar AH, Warren M
    Med J Malaya, 1966 Jun;20(4):327-9.
    PMID: 4380826
    Matched MeSH terms: Zoonoses/epidemiology
  13. Naing C, Reid SA, Aye SN, Htet NH, Ambu S
    PLoS One, 2019;14(5):e0217643.
    PMID: 31141558 DOI: 10.1371/journal.pone.0217643
    Leptospirosis is probably the most widespread zoonotic disease in the world especially in tropical countries. There has been an increase in individual studies, which assessed the frequency of leptospirosis in flood conditions. Some studies showed contact with floods was significantly associated with the occurrence of leptospirosis while other studies reported differently. The objective of this meta-analysis was to synthesize the evidence on the risk factors which are associated with human leptospirosis following flooding. We set up the inclusion criteria and searched for the original studies, addressing leptospirosis in human with related to flood in health-related electronic databases including PubMed, Embase, Ovid Medline, google scholar and Scopus sources. We used the terms 'leptospirosis', 'flood', 'risk factor' and terms from the categories were connected with "OR" within each category and by "AND" between categories. The initial search yielded 557 citations. After the title and abstract screening, 49 full-text papers were reviewed and a final of 18 observational studies met the pre-specified inclusion criteria. Overall, the pooled estimates of 14 studies showed that the contact with flooding was a significant factor for the occurrence of leptospirosis (pooled OR: 2.19, 95%CI: 1.48-3.24, I2:86%). On stratification, the strength of association was greater in the case-control studies (pooled OR: 4.01, 95%CI: 1.26-12.72, I2:82%) than other designs (pooled OR:1.77,95%CI:1.18-2.65, I2:87%). Three factors such as 'being male'(pooled OR:2.06, 95%CI:1.29-2.83), the exposure to livestock animals (pooled OR: 1.95, 95%CI:1.26-2.64), the lacerated wound (pooled OR:4.35, 95%CI:3.07-5.64) were the risk factors significantly associated with the incidence of leptospirosis following flooding in the absence of within-study heterogeneity (I2: 0%). We acknowledge study limitations such as publication bias and type 2 statistical errors. We recommended flood control and other environmental modifications that are expected to reduce the risk of leptospiral infection, and a multi-sectoral effort to this aspect would have long-term benefits.
    Matched MeSH terms: Zoonoses/epidemiology*
  14. Sadiq MB, Hamid NA, Yusri UK, Ramanoon SZ, Mansor R, Affandi SA, et al.
    Prev Vet Med, 2021 Nov;196:105489.
    PMID: 34536805 DOI: 10.1016/j.prevetmed.2021.105489
    This study aimed to assess knowledge, attitude and practices about zoonotic diseases and associated factors among ruminant farmers in Selangor, Malaysia. A cross-sectional survey was conducted between January 2018 and December 2020. The survey was developed in English and Malay, validated, administered to ruminant farmers in Selangor. A total of 84 farmers completed the structured questionnaire. The data were analysed using descriptive statistics, principal component factor analysis and binary logistic regression models. Only 42 % (35/84) had heard of the term "zoonotic diseases" before this study but the majority of farmers (52/84; 61.9 %) were aware that certain diseases could be transmitted between humans and animals. A higher proportion was aware of rabies (20.8 %), followed by tuberculosis (17.8 %) and brucellosis (15.7 %), and most respondents identified the diseases as zoonotic. The majority of farmers stated (60 %) that zoonosis could be prevented and they preferred to learn more about such diseases through veterinary personnel. Higher proportions (>80 %) agreed to practices such as hand washing, proper cooking of meat, and keeping animal health records. However, the need to pasteurise milk before drinking and selling were the least items that farmers agreed to, which was reflected in their practices. Sixty-four per cent of the farmers had stray animals on their farm with dogs (45.5 %) being predominant. Overall, 34.5 % (29/84), 51.1 % (43/84), and 60.7 % (51/84) were considered to have satisfactory knowledge, attitude and practices regarding zoonotic diseases, respectively. Farmers with higher education (odds ratio; OR = 16.6; 95 % CI 3.7-71.4) and rearing exotic breeds of animals (OR = 6.0; 95 % CI 1.3-27.7) were more likely to have satisfactory knowledge about zoonoses, but less likely for those with small herd size (51-100 animals) (OR = 0.19; 95 % CI 0.04-0.95). The odds of having satisfactory attitude towards preventive measures against zoonoses were higher in farmers with higher education (OR = 3.2; 95 % CI 1.1-8.9). Farms with herd health programs were more likely to engage in satisfactory practices towards zoonoses (OR = 3.2; 95 % CI 1.2-10.0) relative to farms lacking programs. These areas might need to be considered by public health authorities to improve the current knowledge and attitude of ruminant farmers about zoonotic diseases in the Malaysian context.
    Matched MeSH terms: Zoonoses/epidemiology*
  15. Alam AM
    Clin Med (Lond), 2022 Jul;22(4):348-352.
    PMID: 35760448 DOI: 10.7861/clinmed.2022-0166
    Nipah virus is an acute febrile illness that can cause fatal encephalitis. It is an emerging zoonotic paramyxovirus endemic to south-east Asia and the western Pacific, and can be transmitted by its primary reservoir of fruit bats, through intermediate animal vectors and by human-to-human spread. Outbreaks of Nipah virus encephalitis have occurred in Malaysia, Singapore, Philippines, India and Bangladesh, with the most recent outbreak occurring in Kerala, India in late 2021. Extremely high case fatality rates have been reported from these outbreaks, and to date no vaccines or therapeutic management options are available. Combining this with its propensity to present non-specifically, Nipah virus encephalitis presents a challenging diagnosis that should not be missed in patients returning from endemic regions. Raising awareness of the epidemiology, clinical presentation and risk factors of contracting Nipah virus is vital to recognise and manage potential outbreaks of this disease in the UK.
    Matched MeSH terms: Zoonoses/epidemiology
  16. Weaver SC, Reisen WK
    Antiviral Res, 2010 Feb;85(2):328-45.
    PMID: 19857523 DOI: 10.1016/j.antiviral.2009.10.008
    Arthropod-borne viruses (arboviruses) are important causes of human disease nearly worldwide. All arboviruses circulate among wild animals, and many cause disease after spillover transmission to humans and agriculturally important domestic animals that are incidental or dead-end hosts. Viruses such as dengue (DENV) and chikungunya (CHIKV) that have lost the requirement for enzootic amplification now produce extensive epidemics in tropical urban centers. Many arboviruses recently have increased in importance as human and veterinary pathogens using a variety of mechanisms. Beginning in 1999, West Nile virus (WNV) underwent a dramatic geographic expansion into the Americas. High amplification associated with avian virulence coupled with adaptation for replication at higher temperatures in mosquito vectors, has caused the largest epidemic of arboviral encephalitis ever reported in the Americas. Japanese encephalitis virus (JEV), the most frequent arboviral cause of encephalitis worldwide, has spread throughout most of Asia and as far south as Australia from its putative origin in Indonesia and Malaysia. JEV has caused major epidemics as it invaded new areas, often enabled by rice culture and amplification in domesticated swine. Rift Valley fever virus (RVFV), another arbovirus that infects humans after amplification in domesticated animals, undergoes epizootic transmission during wet years following droughts. Warming of the Indian Ocean, linked to the El Niño-Southern Oscillation in the Pacific, leads to heavy rainfall in east Africa inundating surface pools and vertically infected mosquito eggs laid during previous seasons. Like WNV, JEV and RVFV could become epizootic and epidemic in the Americas if introduced unintentionally via commerce or intentionally for nefarious purposes. Climate warming also could facilitate the expansion of the distributions of many arboviruses, as documented for bluetongue viruses (BTV), major pathogens of ruminants. BTV, especially BTV-8, invaded Europe after climate warming and enabled the major midge vector to expand is distribution northward into southern Europe, extending the transmission season and vectorial capacity of local midge species. Perhaps the greatest health risk of arboviral emergence comes from extensive tropical urbanization and the colonization of this expanding habitat by the highly anthropophilic (attracted to humans) mosquito, Aedes aegypti. These factors led to the emergence of permanent endemic cycles of urban DENV and CHIKV, as well as seasonal interhuman transmission of yellow fever virus. The recent invasion into the Americas, Europe and Africa by Aedes albopictus, an important CHIKV and secondary DENV vector, could enhance urban transmission of these viruses in tropical as well as temperate regions. The minimal requirements for sustained endemic arbovirus transmission, adequate human viremia and vector competence of Ae. aegypti and/or Ae. albopictus, may be met by two other viruses with the potential to become major human pathogens: Venezuelan equine encephalitis virus, already an important cause of neurological disease in humans and equids throughout the Americas, and Mayaro virus, a close relative of CHIKV that produces a comparably debilitating arthralgic disease in South America. Further research is needed to understand the potential of these and other arboviruses to emerge in the future, invade new geographic areas, and become important public and veterinary health problems.
    Matched MeSH terms: Zoonoses/epidemiology*
  17. Tee KK, Takebe Y, Kamarulzaman A
    Int J Infect Dis, 2009 May;13(3):307-18.
    PMID: 19010076 DOI: 10.1016/j.ijid.2008.09.005
    Over the past decade, a number of unique zoonotic and non-zoonotic viruses have emerged in Malaysia. Several of these viruses have resulted in significant morbidity and mortality to those affected and they have imposed a tremendous public health and economic burden on the state. Amongst the most devastating was the outbreak of Nipah virus encephalitis in 1998, which resulted in 109 deaths. The culling of more than a million pigs, identified as the amplifying host, ultimately brought the outbreak under control. A year prior to this, and subsequently again in 2000 and 2003, large outbreaks of hand-foot-and-mouth disease due to enterovirus 71, with rare cases of fatal neurological complications, were reported in young children. Three other new viruses - Tioman virus (1999), Pulau virus (1999), and Melaka virus (2006) - whose origins have all been linked to bats, have been added to the growing list of novel viruses being discovered in Malaysia. The highly pathogenic H5N1 avian influenza has also been detected in Malaysia with outbreaks in poultry in 2004, 2006, and 2007. Fortunately, no human infections were reported. Finally, the HIV/AIDS epidemic has seen the emergence of an HIV-1 recombinant form (CRF33_01B) in HIV-infected individuals from various risk groups, with evidence of ongoing and rapid expansion.
    Matched MeSH terms: Zoonoses/epidemiology
  18. Coatney GR
    Am J Trop Med Hyg, 1968 Mar;17(2):147-55.
    PMID: 4869108
    Matched MeSH terms: Zoonoses/epidemiology*
  19. Heymann DL
    J Public Health Policy, 2005 Apr;26(1):133-9.
    PMID: 15906882
    The microbes that cause infectious diseases are complex, dynamic, and constantly evolving. They reproduce rapidly, mutate frequently, breach species barriers, adapt with relative ease to new hosts and new environments, and develop resistance to the drugs used to treat them. In their article "Meeting the challenge of epidemic infectious diseases outbreaks: an agenda for research", Kai-Lit Phua and Lai Kah Lee clearly demonstrate how social, behavioural and environmental factors, linked to a host of human activities, have accelerated and amplified these natural phenomena. By reviewing published and non-published information about outbreaks of Nipah virus in Malaysia, severe acute respiratory syndrome (SARS) and avian influenza in Asia, and the HIV pandemic, they provide a series of examples that demonstrate the various social, behavioural and environmental factors of these recent infectious disease outbreaks. They then analyse some of these same determinants in important historical epidemics and pandemics such as plague in medieval Europe, and conclude that it is important to better understand the social conditions that facilitate the appearance of diseases outbreaks in order to determine why and how societies react to outbreaks and their impact on different population groups.
    Matched MeSH terms: Zoonoses/epidemiology
  20. Sulaiman HF, Ismail R, Mohd Yusoff H, Anuar N, Mohd Jamil MR, Daud F
    J Agromedicine, 2020 04;25(2):166-172.
    PMID: 31533524 DOI: 10.1080/1059924X.2019.1666763
    Objective: The Fuzzy Delphi Method (FDM) is one of the phases in Design and Development Research (DDR). It is a systematic method for tool development and validation. This article aims to validate an occupational zoonotic disease questionnaire using this technique. DDR is applied going through phase 1 (needs analysis), phase 2 (development and design), and phase 3 (usability).Method: In phase 1, information about safe work practices and occupational zoonotic exposure was obtained from discussions to verify predetermined domains as stated in The National Park Service survey on zoonotic disease exposure and risk. In phase 2, agreement from 14 experts about the domains was obtained using the FDM. In phase 3, a cognitive debriefing was performed to determine its usability for future studies. A total of five superior domains were verified, and their items were adapted. All domains and their items were submitted to experts to obtain consensus agreement.Results: A total of 31 (96.9%) passed the Triangle of Fuzzy Numbers and Defuzzification process with acceptable consensus agreement (78.8-91.9%) and threshold d value (0.07-0.14). Only four veterinarians were needed for cognitive debriefing to achieve the point of saturation.Conclusion: FDM in DDR is suitable to be applied by various professions for tool validation, as it is doable and cost and time effective. The Occupational Zoonotic Disease Questionnaire is now ready to be used for future studies in Malaysia.
    Matched MeSH terms: Zoonoses/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links