Displaying all 5 publications

Abstract:
Sort:
  1. Salman SA, Sulaiman SA, Ismail Z, Gan SH
    Toxicol. Mech. Methods, 2010 Mar;20(3):137-42.
    PMID: 20128736 DOI: 10.3109/15376511003602112
    Many previous published methods for the quantitative determination of propranolol (PRN) in human plasma have poor recoveries and were not validated according to the FDA guideline. The aim of this study is to develop a simple HPLC method for detecting PRN in human plasma and to validate it so that it can be applied to a clinical study. Chromatographic separation was achieved using a mixture of a mobile phase consisting of 160 ml water, 180 ml methanol, 70 ml acetonitrile, 2.5 ml acetic acid, and 125 microl triethylamine (v/v). The pH of the whole mixture was adjusted to 3.4. A flow rate of 0.5 ml/min was employed throughout with a 15 microl injection volume. Detection was done using a UV detector at 291 nm. The validated method was linear for concentrations ranging from 15-180 ng/ ml with a good separation and specificity for both PRN and its internal standard, oxprenolol (OXP), with excellent recoveries, precision, and accuracies. The limit of detection (LOD) and limit of quantification (LOQ) were 1 and 10 ng/ml, respectively. The stability studies demonstrated that PRN is stable in the autosampler vials and also up to 3.5 months. To the authors' knowledge, the recovery, that ranged between 97.9-102.7%, is the highest among all previously reported methods that used HPLC with UV detection. The developed and validated method for PRN analysis is excellent and applicable to a clinical study.
    Matched MeSH terms: Adrenergic beta-Antagonists/chemistry
  2. Tay KS, Rahman NA, Abas MR
    Environ Sci Pollut Res Int, 2013 May;20(5):3115-21.
    PMID: 23054788 DOI: 10.1007/s11356-012-1223-3
    This study investigated the degradation pathway of metoprolol, a widely used β-blocker, in the ozonation via the identification of generated ozonation by-products (OPs). Structure elucidation of OPs was performed using HPLC coupled with quadrupole time-of-flight high-resolution mass spectrometry. Seven OPs were identified, and four of these have not been reported elsewhere. Identified OPs of metoprolol included aromatic ring breakdown by-products; aliphatic chain degraded by-products and aromatic ring mono-, di-, and tetrahydroxylated derivatives. Based on the detected OPs, metoprolol could be degraded through aromatic ring opening reaction via reaction with ozone (O3) and degradation of aliphatic chain and aromatic ring via reaction with hydroxyl radical (•OH).
    Matched MeSH terms: Adrenergic beta-Antagonists/chemistry
  3. Charoo NA, Shamsher AA, Lian LY, Abrahamsson B, Cristofoletti R, Groot DW, et al.
    J Pharm Sci, 2014 Feb;103(2):378-91.
    PMID: 24382794 DOI: 10.1002/jps.23817
    Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release (IR) solid oral dosage forms containing bisoprolol as the sole active pharmaceutical ingredient (API) are reviewed. Bisoprolol is classified as a Class I API according to the current Biopharmaceutics Classification System (BCS). In addition to the BCS class, its therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions, and reported BE/bioavailability problems are taken into consideration. Qualitative compositions of IR tablet dosage forms of bisoprolol with a marketing authorization (MA) in ICH (International Conference on Harmonisation) countries are tabulated. It was inferred that these tablets had been demonstrated to be bioequivalent to the innovator product. No reports of failure to meet BE standards have been made in the open literature. On the basis of all these pieces of evidence, a biowaiver can currently be recommended for bisoprolol fumarate IR dosage forms if (1) the test product contains only excipients that are well known, and used in normal amounts, for example, those tabulated for products with MA in ICH countries and (2) both the test and comparator dosage form are very rapidly dissolving, or, rapidly dissolving with similarity of the dissolution profiles demonstrated at pH 1.2, 4.5, and 6.8.
    Matched MeSH terms: Adrenergic beta-Antagonists/chemistry*
  4. Khalit WN, Tay KS
    Environ Sci Pollut Res Int, 2016 Feb;23(3):2521-9.
    PMID: 26423291 DOI: 10.1007/s11356-015-5470-y
    This study investigated the reaction kinetics and the transformation by-products of acebutolol during aqueous chlorination. Acebutolol is one of the commonly used β-blockers for the treatment of cardiovascular diseases. It has been frequently detected in the aquatic environment. In the kinetics study, the second-order rate constant for the reaction between acebutolol and chlorine (k app) was determined at 25 ± 0.1 °C. The degradation of acebutolol by free available chlorine was highly pH dependence. When the pH increased from 6 to 8, it was found that the k app for the reaction between acebutolol and free available chlorine was increased from 1.68 to 11.2 M(-1) min(-1). By comparing with the reported k app values, the reactivity of acebutolol toward free available chlorine was found to be higher than atenolol and metoprolol but lower than nadolol and propranolol. Characterization of the transformation by-products formed during the chlorination of acebutolol was carried out using liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Seven major transformation by-products were identified. These transformation by-products were mainly formed through dealkylation, hydroxylation, chlorination, and oxidation reactions.
    Matched MeSH terms: Adrenergic beta-Antagonists/chemistry
  5. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Adrenergic beta-Antagonists/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links