Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Tamizi AA, Md-Yusof AA, Mohd-Zim NA, Nazaruddin NH, Sekeli R, Zainuddin Z, et al.
    Mol Biol Rep, 2023 Nov;50(11):9353-9366.
    PMID: 37819494 DOI: 10.1007/s11033-023-08842-2
    BACKGROUND: Agrobacterium-mediated transformation and particle bombardment are the two common approaches for genome editing in plant species using CRISPR/Cas9 system. Both methods require careful manipulations of undifferentiated cells and tissue culture to regenerate the potentially edited plants. However, tissue culture techniques are laborious and time-consuming.

    METHODS AND RESULTS: In this study, we have developed a simplified, tissue culture-independent protocol to deliver the CRISPR/Cas9 system through in planta transformation in Malaysian rice (Oryza sativa L. subsp. indica cv. MR 219). Sprouting seeds with cut coleoptile were used as the target for the infiltration by Agrobacterium tumefaciens and we achieved 9% transformation efficiency. In brief, the dehusked seeds were surface-sterilised and imbibed, and the coleoptile was cut to expose the apical meristem. Subsequently, the cut coleoptile was inoculated with A. tumefaciens strain EHA105 harbouring CRISPR/Cas9 expression vector. The co-cultivation was conducted for five to six days in a dark room (25 ± 2 °C) followed by rooting, acclimatisation, and growing phases. Two-month-old plant leaves were then subjected to a hygromycin selection, and hygromycin-resistant plants were identified as putative transformants. Further validation through the polymerase chain reaction verified the integration of the Cas9 gene in four putative T0 lines. During the fruiting stage, it was confirmed that the Cas9 gene was still present in three randomly selected tillers from two 4-month-old transformed plants.

    CONCLUSION: This protocol provides a rapid method for editing the rice genome, bypassing the need for tissue culture. This article is the first to report the delivery of the CRISPR/Cas9 system for in planta transformation in rice.

    Matched MeSH terms: Agrobacterium tumefaciens/genetics
  2. Singh JKD, Mazumdar P, Othman RY, Harikrishna JA
    J Biotechnol, 2024 May 20;387:69-78.
    PMID: 38582406 DOI: 10.1016/j.jbiotec.2024.04.001
    Banana, a globally popular fruit, is widely cultivated in tropical and sub-tropical regions. After fruit harvest, remaining banana plant materials are low-value byproducts, mostly composted or used as fibre or for food packaging. As an aim to potentially increase farmer income, this study explored underutilised banana biomass as a novel plant tissue for production of a high-value product. Protein scFvTG130 used in this study, is an anti-toxoplasma single chain variable fragment antibody that can be used in diagnostics and neutralising the Toxoplasma gondii pathogen. Using detached banana leaves, we investigated the factors influencing the efficacy of a transient expression system using reporter genes and recombinant protein, scFvTG130. Transient expression was optimal at 2 days after detached banana leaves were vacuum infiltrated at 0.08 MPa vacuum pressure for a duration of 3 min with 0.01% (v/v) Tween20 using Agrobacterium strain GV3101 harbouring disarmed virus-based vector pIR-GFPscFvTG130. The highest concentration of anti-toxoplasma scFvTG130 antibody obtained using detached banana leaves was 22.8 µg/g fresh leaf tissue. This first study using detached banana leaf tissue for the transient expression of a recombinant protein, successfully demonstrated anti-toxoplasma scFvTG130 antibody expression, supporting the potential application for other related proteins using an underutilised detached banana leaf tissue.
    Matched MeSH terms: Agrobacterium/genetics
  3. Nik Marzuki Sidik, Roslina Mat Yazid, Che Radziah Che Mohd. Zain, Ismanizan Ismail
    Metalotionin (MT ) merupakan protein pengikat logam berberat molekul rendah dan kaya dengan sistein yang hadir dalam pelbagai jenis organisma termasuklah bakteria, kulat, tumbuhan dan haiwan. MT tumbuhan dipercayai mengambil bahagian dalam metabolisme dan penyahtoksikan logam dengan cara pengkelatan ion-ion logam berat. Fungsinya yang unik ini telah mendorong minat untuk memencilkan gen MT daripada rumput sambau, Eleusine indica. DNA pelengkap (cDNA) eiMT 1 telah diklonkan ke dalam vektor binari pBI121 untuk ditransformasikan ke dalam pokok tembakau melalui perantaraan Agrobacterium tumefaciens. Penyaringan pokok tembakau transgenik dengan PCR dilakukan menggunakan 3 pasang pencetus yang direka khas iaitu pasangan CMT F dan CMT R, 35SF dan PMT R, dan pasangan pencetus khusus-gen MT FS2 dan MT RS2. Ketiga-tiga pasangan pencetus ini berjaya menghasilkan saiz serpihan DNA jangkaan iaitu masing-masing 270 pb, 1.1 kb dan 170 pb. Penjujukan terhadap serpihan bersaiz 170 pb dan analisis jujukan menunjukkan persamaan 100 % dengan eiMT 1. Kajian pengekspresan gen melalui pendekatan transkripsi berbalik-PCR membuktikan bahawa transgen eiMT 1 telah berjaya diekspreskan dalam 11 daripada 19 pokok transgenik yang dikaji.
    Matched MeSH terms: Agrobacterium tumefaciens
  4. Ooi CT, Syahida A, Stanslas J, Maziah M
    World J Microbiol Biotechnol, 2013 Mar;29(3):421-30.
    PMID: 23090845 DOI: 10.1007/s11274-012-1194-z
    This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.
    Matched MeSH terms: Agrobacterium/classification; Agrobacterium/genetics*
  5. Kamaladini H, Abdullah SN, Aziz MA
    J Biosci Bioeng, 2011 Feb;111(2):217-25.
    PMID: 21044862 DOI: 10.1016/j.jbiosc.2010.09.010
    Reporter gene activity under the regulation of the oil palm metallothionein-like gene, MT3-A promoter was assessed in prokaryotes. Vector constructs containing MT3-A promoter with (W1MT3-A) and without (W2MT3-A) five prime untranslated region (5'-UTR) fused to ß-glucuronidase (GUS) gene in pCAMBIA 1304 vector were produced. 5'-rapid amplification of cDNA ends (RACE) using mRNA isolated from Escherichia coli and Agrobacterium tumefaciens harboring W1MT3-A confirmed that fusion transcripts of MT3-A 5'-UTR-GUS were successfully produced in both bacteria. Competitive PCR and GUS fluorometric assay showed changes in the level of GUS gene transcripts and enzyme activity in response to increasing concentrations of Cu²+ and Zn²+. The application of Cu²+ increased GUS activity and GUS mRNA level in both bacteria. In E. coli, a high level of GUS activity driven by W1MT3-A and W2MT3-A was observed in treatment with 25 μM Cu²+ resulting in an increase in the GUS mRNA level to 7.2 and 7.5 x 10⁻⁴ pmol/μl respectively, compared to the control (5.1 x 10⁻⁴ pmol/μl). The lowest GUS activity and GUS mRNA level were obtained for W1MT3-A and W2MT3-A in the presence of 100 μM Cu²+ in both bacteria compared to the control (without Cu²+). The application of different Zn²+ concentrations resulted in a strong decrease in the GUS activity and GUS mRNA level in E. coli and A. tumefaciens. These findings showed that the oil palm MT3-A promoter is functional in prokaryotes and produced detectable GUS transcripts and enzyme activities. This promoter may potentially be used in prokaryotic systems which require metal inducible gene expression.
    Matched MeSH terms: Agrobacterium tumefaciens/genetics; Agrobacterium tumefaciens/metabolism*
  6. Ariffin N, Abdullah R, Rashdan Muad M, Lourdes J, Emran NA, Ismail MR, et al.
    Plasmid, 2011 Sep;66(3):136-43.
    PMID: 21827784 DOI: 10.1016/j.plasmid.2011.07.002
    Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is a polyhydroxyalkanoate (PHA) bioplastic group with thermoplastic properties is thus high in quality and can be degradable. PHBV can be produced by bacteria, but the process is not economically competitive with polymers produced from petrochemicals. To overcome this problem, research on transgenic plants has been carried out as one of the solutions to produce PHBV in economically sound alternative manner. Four different genes encoded with the enzymes necessary to catalyze PHBV are bktB, phaB, phaC and tdcB. All the genes came with modified CaMV 35S promoters (except for the tdcB gene, which was promoted by the native CaMV 35S promoter), nos terminator sequences and plastid sequences in order to target the genes into the plastids. Subcloning resulted in the generation of two different orientations of the tdcB, pLMIN (left) and pRMIN (right), both 17.557 and 19.967 kb in sizes. Both plasmids were transformed in immature embryos (IE) of oil palm via Agrobacterium tumefaciens. Assays of GUS were performed on one-week-old calli and 90% of the calli turned completely blue. This preliminary test showed positive results of integration. Six-months-old calli were harvested and RNA of the calli were isolated. RT-PCR was used to confirm the transient expression of PHBV transgenes in the calli. The bands were 258, 260, 315 and 200 bp in size for bktB, phaB, phaC and tdcB transgenes respectively. The data obtained showed that the bktB, phaB, phaC and tdcB genes were successfully integrated and expressed in the oil palm genome.
    Matched MeSH terms: Agrobacterium tumefaciens/genetics; Agrobacterium tumefaciens/metabolism
  7. Siddiqui MF, Sakinah M, Singh L, Zularisam AW
    J Biotechnol, 2012 Oct 31;161(3):190-7.
    PMID: 22796090 DOI: 10.1016/j.jbiotec.2012.06.029
    Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.
    Matched MeSH terms: Agrobacterium tumefaciens/drug effects; Agrobacterium tumefaciens/metabolism
  8. Arokiaraj P, Yeet Yeang H, Fong Cheong K, Hamzah S, Jones H, Coomber S, et al.
    Plant Cell Rep, 1998 May;17(8):621-625.
    PMID: 30736515 DOI: 10.1007/s002990050454
    Hevea brasiliensis anther calli were genetically transformed using Agrobacterium GV2260 (p35SGUSINT) that harboured the β-glucuronidase (gus) and neomycin phosphotransferase (nptII) genes. β-Glucuronidase protein (GUS) was expressed in the leaves of kanamycin-resistant plants that were regnerated, and the presence of the gene was confirmed by Southern analysis. GUS was also observed to be expressed in the latex and more importantly in the serum fraction. Transverse sections of the leaf petiole from a transformed plant revealed GUS expression to be especially enhanced in the phloem and laticifers. GUS expression was subsequently detected in every one of 194 plants representing three successive vegetative cycles propagated from the original transformant. Transgenic Hevea could thus facilitate the continual production of foreign proteins expressed in the latex.
    Matched MeSH terms: Agrobacterium
  9. Gan HM, Lee MVL, Savka MA
    PeerJ, 2019;7:e6366.
    PMID: 30775173 DOI: 10.7717/peerj.6366
    The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
    Matched MeSH terms: Agrobacterium tumefaciens
  10. Subramaniam, Sreeramanan, Balasubramaniam, Vinod, Poobathy, Ranjetta, Sreenivasan, Sasidharan, Rathinam, Xavier
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    An early step in the Agrobacterium-mediated transformation of Phalaenopsis violacea orchid was investigated to elucidate the plant-bacterium interaction. Directed movement in response to chemical attractants is of crucial importance to Agrobacterium tumefaciens strains. Chemotaxis of A. tumefaciens strains (EHA 101 and 105) towards wounded orchid tissues has been studied by using swarm agar plates. The results obtained indicate a minor role for chemotaxis in determining host specificity and suggest that it could not be responsible for the absence of tumourigenesis in P. violacea orchid under natural conditions. The spectrometric GUS and green fluorescent protein (GFP) assays provided information on the amount of inoculated A. tumefaciens that effectively bound to various orchid tissues. It can be concluded that, at least during the two early steps of interaction, A. tumefaciens appears to be compatible with P. violacea, indicating a potential basis for genetic transformation.
    Matched MeSH terms: Agrobacterium tumefaciens
  11. Mad' Atari MFB, Folta KM
    BMC Res Notes, 2019 Mar 15;12(1):144.
    PMID: 30876440 DOI: 10.1186/s13104-019-4117-3
    OBJECTIVE: The treatment of plant tissue with Agrobacterium tumefaciens is often a critical first step to both stable and transient plant transformation. In both applications bacterial suspensions are oftentimes physically introduced into plant tissues using hand-driven pressure from a needleless syringe. While effective, this approach has several drawbacks that limit reproducibility. Pressure must be provided with the syringe perfectly perpendicular to the tissue surface. The researcher must also attempt to provide even and consistent pressure, both within and between experimental replicates. These factors mean that the procedures do not always translate well between research groups or biological replicates.

    RESULTS: We have devised a method to introduce Agrobacterium suspensions into plant leaves with greater reproducibility. Using a decommissioned dissecting microscope as an armature, a syringe body with the bacterial suspension is mounted to the nosepiece. Gentle, even pressure is applied by rotating the focus knob. The treatment force is measured using a basic kitchen scale. The development of the Standardized Pressure Agrobacterium Infiltration Device (SPAID) provides a means to deliver consistent amounts of bacterial suspensions into plant tissues with the goal of increasing reproducibility between replicates and laboratories.

    Matched MeSH terms: Agrobacterium tumefaciens
  12. Intan Elya Suka, Nur Farhana Roslan, Zamri Zainal, Nurulhikma Md Isa, Bee LC
    Sains Malaysiana, 2018;47:1465-1471.
    Gen Proteolisis 6 (PRT6) merupakan gen yang memainkan peranan penting dalam tapak jalan N-end rule dan berfungsi
    sebagai enzim E3 ligase. PRT6 berperanan dalam pengenalan protein sasaran bagi proses degradasi. Objektif utama kajian
    ini adalah untuk mentransformasi konstruk RNAi PRT6 ke dalam tomato berperantarakan Agrobacterium tumefaciens.
    Ini bertujuan untuk memahami peranan tapak jalan N-end rule semasa proses pemasakan buah. Beberapa faktor yang
    memberi kesan kepada transformasi seperti masa ko-penanaman dan juga kepekatan antibiotik yang digunakan telah
    dioptimumkan. Keputusan kajian menunjukkan pengeraman kotiledon selama 48 jam pada medium ko-penanaman dapat
    meningkatkan penghasilan kalus sebanyak 61% manakala penggunaan 500 mg/L antibiotik karbenisilin dalam medium
    regenerasi pucuk dapat mengurangkan kontaminasi A. tumefaciens sehingga 5.2%. Selain itu, strain A. tumefaciens
    C58 merupakan strain A. tumefaciens yang paling sesuai digunakan sebagai perantara dalam kajian ini. Tindak balas
    berantai polimerase (PCR) telah dijalankan pada pucuk yang terhasil untuk mengesahkan integrasi fragmen PRT6 ke dalam
    genom tomato. Berdasarkan analisis PCR, kesemua tujuh pucuk putatif transgenik adalah merupakan transforman positif.
    Matched MeSH terms: Agrobacterium tumefaciens
  13. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    PeerJ, 2020;8:e9094.
    PMID: 32391211 DOI: 10.7717/peerj.9094
    Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
    Matched MeSH terms: Agrobacterium
  14. Ibrahim ER, Hossain MA, Roslan HA
    Biomed Res Int, 2014;2014:348140.
    PMID: 25295258 DOI: 10.1155/2014/348140
    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.
    Matched MeSH terms: Agrobacterium/genetics
  15. Gnasekaran P, Antony JJ, Uddain J, Subramaniam S
    ScientificWorldJournal, 2014;2014:583934.
    PMID: 24977213 DOI: 10.1155/2014/583934
    The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A 600 nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 μM acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes.
    Matched MeSH terms: Agrobacterium/genetics*
  16. Md Setamam N, Jaafar Sidik N, Abdul Rahman Z, Che Mohd Zain CR
    BMC Res Notes, 2014 Jun 30;7:414.
    PMID: 24981787 DOI: 10.1186/1756-0500-7-414
    BACKGROUND: Capsicum annuum and Capsicum frutescens, also known as "chilies", belong to the Solanaceae family and have tremendous beneficial properties. The application of hairy root culture may become an alternative method for future development of these species by adding value, such as by increasing secondary metabolites and improving genetic and biochemical stability compared with normal Capsicum plants. Therefore, in this research, different types of explants of both species were infected with various Agrobacterium rhizogenes strains to provide more information about the morphology and induction efficiency of hairy roots. After 2 weeks of in vitro seed germination, young seedling explants were cut into three segments; the cotyledon, hypocotyl, and radical. Then, the explants were co-cultured with four isolated A. rhizogenes strains in Murashige & Skoog culture media (MS) containing decreasing carbenicillin disodium concentrations for one month.

    RESULTS: In this experiment, thick and short hairy roots were induced at all induction sites of C. annuum while thin, elongated hairy roots appeared mostly at wound sites of C. frutescens. Overall, the hairy root induction percentages of C. frutescens were higher compared with C. annuum. Hairy root initiation was observed earliest using radicles (1st week), followed by cotyledons (2nd week), and hypocotyls (3rd week). Cotyledon explants of both species had the highest induction frequency with all strains compared with the other explants types. Strains ATCC 13333 and ATCC 15834 were the most favourable for C. frutescens while ATCC 43056 and ATCC 43057 were the most favourable for C. annuum. The interactions between the different explants and strains showed significant differences with p-values < 0.0001 in both Capsicum species.

    CONCLUSIONS: Both Capsicum species were amenable to A. rhizogenes infection and hairy root induction is recommended for use as an alternative explants in future plant-based studies.

    Matched MeSH terms: Agrobacterium/physiology*
  17. Azad MA, Rabbani MG, Amin L, Sidik NM
    Int J Genomics, 2013;2013:235487.
    PMID: 24066284 DOI: 10.1155/2013/235487
    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi.
    Matched MeSH terms: Agrobacterium tumefaciens
  18. Izawati AM, Masani MY, Ismanizan I, Parveez GK
    Front Plant Sci, 2015;6:727.
    PMID: 26442041 DOI: 10.3389/fpls.2015.00727
    DOG(R)1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOG(R)1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l(-1) 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOG(R)1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOG(R)1 gene and 2-DOG for regenerating transgenic oil palm.
    Matched MeSH terms: Agrobacterium tumefaciens
  19. Yong WT, Henry ES, Abdullah JO
    Trop Life Sci Res, 2010 Dec;21(2):115-30.
    PMID: 24575204
    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 μM galactose and 100 μM tyrosine supplemented with 600 μM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 μM galactose and 50 μM tyrosine with 200 μM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative T. semidecandra transformants was verified by PCR amplification with specific primers.
    Matched MeSH terms: Agrobacterium tumefaciens
  20. Titah HS, Abdullah SRS, Idris M, Anuar N, Basri H, Mukhlisin M, et al.
    Int J Microbiol, 2018;2018:3101498.
    PMID: 30723505 DOI: 10.1155/2018/3101498
    Certain rhizobacteria can be applied to remove arsenic in the environment through bioremediation or phytoremediation. This study determines the minimum inhibitory concentration (MIC) of arsenic on identified rhizobacteria that were isolated from the roots of Ludwigia octovalvis (Jacq.) Raven. The arsenic biosorption capability of the was also analyzed. Among the 10 isolated rhizobacteria, five were Gram-positive (Arthrobacter globiformis, Bacillus megaterium, Bacillus cereus, Bacillus pumilus, and Staphylococcus lentus), and five were Gram-negative (Enterobacter asburiae, Sphingomonas paucimobilis, Pantoea spp., Rhizobium rhizogenes, and Rhizobium radiobacter). R. radiobacter showed the highest MIC of >1,500 mg/L of arsenic. All the rhizobacteria were capable of absorbing arsenic, and S. paucimobilis showed the highest arsenic biosorption capability (146.4 ± 23.4 mg/g dry cell weight). Kinetic rate analysis showed that B. cereus followed the pore diffusion model (R2 = 0.86), E. asburiae followed the pseudo-first-order kinetic model (R2 = 0.99), and R. rhizogenes followed the pseudo-second-order kinetic model (R2 = 0.93). The identified rhizobacteria differ in their mechanism of arsenic biosorption, arsenic biosorption capability, and kinetic models in arsenic biosorption.
    Matched MeSH terms: Agrobacterium tumefaciens
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links