Displaying all 12 publications

Abstract:
Sort:
  1. De Rubis G, Paudel KR, Allam VSRR, Malyla V, Subramaniyan V, Singh SK, et al.
    Pathol Res Pract, 2024 Jan;253:154971.
    PMID: 38029714 DOI: 10.1016/j.prp.2023.154971
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  2. Pang SW, Lahiri C, Poh CL, Tan KO
    Cell Signal, 2018 05;45:54-62.
    PMID: 29378289 DOI: 10.1016/j.cellsig.2018.01.022
    Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper.
    Matched MeSH terms: Antigens, Neoplasm/metabolism*
  3. Munchar MJ, Sharifah NA, Jamal R, Looi LM
    Pathology, 2003 Apr;35(2):125-9.
    PMID: 12745459
    CD44 is a cell adhesion molecule that plays an important role in the cascade of metastasis and progression of human malignant tumours. A large family of variants or isoforms, generated by alternative splicing of a single gene, has been reported to be involved in the malignant process by conferring metastatic potential to non-metastatic cells. The objective of this study was to compare the expression of CD44 standard molecule with the International Neuroblastoma Pathology Classification (INPC) for neuroblastic tumours, a histological grading system based on the Shimada system for predicting the clinical outcome in neuroblastic tumours.
    Matched MeSH terms: Antigens, Neoplasm/metabolism*
  4. Mohtar MA, Syafruddin SE, Nasir SN, Low TY
    Biomolecules, 2020 02 07;10(2).
    PMID: 32046162 DOI: 10.3390/biom10020255
    Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  5. Chi Soh JE, Abu N, Jamal R
    Immunotherapy, 2018 09;10(12):1093-1104.
    PMID: 30185136 DOI: 10.2217/imt-2018-0044
    The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
    Matched MeSH terms: Antigens, Neoplasm/metabolism*
  6. Ali Y, Abd Hamid S
    Tumour Biol., 2016 Jan;37(1):47-55.
    PMID: 26482620 DOI: 10.1007/s13277-015-4270-9
    Topoisomerases are nuclear enzymes that regulate topology of DNA by facilitating the temporary cleavage and ligation cycle of DNA. Among all forms of topoisomerases, TOP-IIA is extensively associated with cell proliferation and therefore is an important therapeutic target in diseases that involved cellular proliferation such as cancers. Nearly half of present-day antitumor regimens contain at least one prescription that act as a topoisomerase inhibitor. Generally, tumor cells show divergent expression of TOP-IIA compared to normal cells. The remarkable expression of TOP-IIA in various carcinomas provides a significant biomarker toward understanding the nature of malignancy. TOP-IIA expression and amplification studies help in diagnosing cancer and to observe the disease progression, overall survival (OS) of patients, and response to therapy. This review highlights the research output and analysis in exploring the standing of TOP-IIA in various carcinomas. As some reports show contradiction within the same field of interest, the outline of that may help to induce researchers for further investigation and clarification. To the best of our knowledge, this is the first overview briefly summarizing the prognostic feature of TOP-IIA in various types of cancer.
    Matched MeSH terms: Antigens, Neoplasm/metabolism*
  7. Abdullah NH, Thomas NF, Sivasothy Y, Lee VS, Liew SY, Noorbatcha IA, et al.
    Int J Mol Sci, 2016 Feb 14;17(2):143.
    PMID: 26907251 DOI: 10.3390/ijms17020143
    The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR) was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML) (R² = 0.9717, R²cv = 0.9506) indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase.
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  8. Lee YH, Pang SW, Poh CL, Tan KO
    J Cancer Res Clin Oncol, 2016 Sep;142(9):1967-77.
    PMID: 27424190 DOI: 10.1007/s00432-016-2205-5
    PURPOSE: Members of paraneoplastic Ma (PNMA) family have been identified as onconeuronal antigens, which aberrant expressions in cancer cells of patients with paraneoplastic disorder (PND) are closely linked to manifestation of auto-immunity, neuro-degeneration, and cancer. The purpose of present study was to determine the role of PNMA5 and its functional relationship to MOAP-1 (PNMA4) in human cancer cells.

    METHODS: PNMA5 mutants were generated through deletion or site-directed mutagenesis and transiently expressed in human cancer cell lines to investigate their role in apoptosis, subcellular localization, and potential interaction with MOAP-1 through apoptosis assays, fluorescence microscopy, and co-immunoprecipitation studies, respectively.

    RESULTS: Over-expressed human PNMA5 exhibited nuclear localization pattern in both MCF-7 and HeLa cells. Deletion mapping and mutagenesis studies showed that C-terminus of PNMA5 is responsible for nuclear localization, while the amino acid residues (391KRRR) within the C-terminus of PNMA5 are required for nuclear targeting. Deletion mapping and co-immunoprecipitation studies showed that PNMA5 interacts with MOAP-1 and N-terminal domain of PNMA5 is required for interaction with MOAP-1. Furthermore, co-expression of PNMA5 and MOAP-1 in MCF-7 cells significantly enhanced chemo-sensitivity of MCF-7 to Etoposide treatment, indicating that PNMA5 and MOAP-1 interact synergistically to promote apoptotic signaling in MCF-7 cells.

    CONCLUSIONS: Our results show that PNMA5 promotes apoptosis signaling in HeLa and MCF-7 cells and interacts synergistically with MOAP-1 through its N-terminal domain to promote apoptosis and chemo-sensitivity in human cancer cells. The C-terminal domain of PNMA5 is required for nuclear localization; however, both N-and C-terminal domains of PNMA5 appear to be required for pro-apoptotic function.

    Matched MeSH terms: Antigens, Neoplasm/metabolism
  9. Wang H, Lakshmipriya T, Chen Y, Gopinath SCB
    Biomed Res Int, 2019;2019:2807123.
    PMID: 31080815 DOI: 10.1155/2019/2807123
    Cervical cancer is a life-threatening complication, appearing as the uncontrolled growth of abnormal cells in the lining of the cervix. Every year, increasing numbers of cervical cancer cases are reported worldwide. Different identification strategies were proposed to detect cervical cancer at the earlier stages using various biomarkers. Squamous cell carcinoma antigen (SCC-Ag) is one of the potential biomarkers for this diagnosis. Nanomaterial-based detection systems were shown to be efficient with different clinical biomarkers. In this study, we have demonstrated strontium oxide-modified interdigitated electrode (IDE) fabrication by the sol-gel method and characterized by scanning electron microscopy and high-power microscopy. Analysis of the bare devices indicated the reproducibility with the fabrication, and further pH scouting on the device revealed that the reliability of the working pH ranges from 3 to 9. The sensing surface was tested to detect SCC-Ag against its specific antibody; the detection limit was found to be 10 pM, and the sensitivity was in the range between 1 and 10 pM as calculated by 3σ. The specificity experiment was carried out using major proteins from human serum, such as albumin and globulin. SCC-Ag was shown to be selectively detected on the strontium oxide-modified IDE surface.
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  10. Subramaniam KS, Tham ST, Mohamed Z, Woo YL, Mat Adenan NA, Chung I
    PLoS One, 2013;8(7):e68923.
    PMID: 23922669 DOI: 10.1371/journal.pone.0068923
    Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs) using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin) and hormonal (estrogen and progesterone) receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175%) when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51%) (P<0.0001). These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001), suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR), also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP)-1, interleukin (IL)-6, IL-8, RANTES and vascular endothelial growth factor (VEGF) than normal fibroblasts. Our data suggests that in contrast to normal fibroblasts, CAFs may exhibit a pro-tumorigenic effect in the progression of endometrial cancer, and PI3K/Akt and MAPK/Erk signaling may represent critical regulators in how endometrial cancer cells respond to their microenvironment.
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  11. Chai SJ, Yap YY, Foo YC, Yap LF, Ponniah S, Teo SH, et al.
    PLoS One, 2015;10(11):e0130464.
    PMID: 26536470 DOI: 10.1371/journal.pone.0130464
    Nasopharyngeal carcinoma (NPC) is highly prevalent in South East Asia and China. The poor outcome is due to late presentation, recurrence, distant metastasis and limited therapeutic options. For improved treatment outcome, immunotherapeutic approaches focusing on dendritic and autologous cytotoxic T-cell based therapies have been developed, but cost and infrastructure remain barriers for implementing these in low-resource settings. As our prior observations had found that four-jointed box 1 (FJX1), a tumor antigen, is overexpressed in NPCs, we investigated if short 9-20 amino acid sequence specific peptides matching to FJX1 requiring only intramuscular immunization to train host immune systems would be a better treatment option for this disease. Thus, we designed 8 FJX1-specific peptides and implemented an assay system to first, assess the binding of these peptides to HLA-A2 molecules on T2 cells. After, ELISPOT assays were used to determine the peptides immunogenicity and ability to induce potential cytotoxicity activity towards cancer cells. Also, T-cell proliferation assay was used to evaluate the potential of MHC class II peptides to stimulate the expansion of isolated T-cells. Our results demonstrate that these peptides are immunogenic and peptide stimulated T-cells were able to induce peptide-specific cytolytic activity specifically against FJX1-expressing cancer cells. In addition, we demonstrated that the MHC class II peptides were capable of inducing T-cell proliferation. Our results suggest that these peptides are capable of inducing specific cytotoxic cytokines secretion against FJX1-expressing cancer cells and serve as a potential vaccine-based therapy for NPC patients.
    Matched MeSH terms: Antigens, Neoplasm/metabolism
  12. Lee YH, Pang SW, Tan KO
    Biochem Biophys Res Commun, 2016 Apr 22;473(1):224-229.
    PMID: 27003254 DOI: 10.1016/j.bbrc.2016.03.083
    PNMA2, a member of the Paraneoplastic Ma Family (PNMA), was identified through expression cloning by using anti-sera from patients with paraneoplastic disorder. Tissue expression studies showed that PNMA2 was predominantly expressed in normal human brain; however, the protein was shown to exhibit abnormal expression profile as it was found to be expressed in a number of tumour tissues obtained from paraneopalstic patients. The abnormal expression profile of PNMA2 suggests that it might play an important role in tumorigenesis; however, apart from protein expression and immunological studies, the physiological role of PNMA2 remains unclear. In order to determine potential role of PNMA2 in tumorigenesis, and its functional relationship with PNMA family members, MOAP-1 (PNMA4) and PNMA1, expression constructs encoding the respective proteins were generated for both in vitro and in vivo studies. Our investigations showed that over-expressed MOAP-1 and PNMA1 promoted apoptosis and chemo-sensitization in MCF-7 cells as evidenced by condensed nuclei and Annexin-V positive MCF-7 cells; however, the effects mediated by these proteins were significantly inhibited or abolished when co-expressed with PNMA2 in MCF-7 cells. Furthermore, co-immunoprecipitation study showed that PNMA1 and MOAP-1 failed to associate with each other but readily formed respective heterodimer with PNMA2, suggesting that PNMA2 functions as antagonist of MOAP-1 and PNMA1 through heterodimeric interaction.
    Matched MeSH terms: Antigens, Neoplasm/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links