Displaying all 6 publications

Abstract:
Sort:
  1. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
    Matched MeSH terms: Bacillus subtilis/enzymology*
  2. Aziz NFHA, Abbasiliasi S, Ng HS, Phapugrangkul P, Bakar MHA, Tam YJ, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2017 Jun 15;1055-1056:104-112.
    PMID: 28458127 DOI: 10.1016/j.jchromb.2017.04.029
    The partitioning of β-mannanase derived from Bacillus subtilis ATCC 11774 in aqueous two-phase system (ATPS) was studied. The ATPS containing different molecular weight of polyethylene glycol (PEG) and types of salt were employed in this study. The PEG/salt composition for the partitioning of β-mannanase was optimized using response surface methodology. The study demonstrated that ATPS consists of 25% (w/w) of PEG 6000 and 12.52% (w/w) of potassium citrate is the optimum composition for the purification of β-mannanase with a purification fold (PF) of 2.28 and partition coefficient (K) of 1.14. The study on influences of pH and crude loading showed that ATPS with pH 8.0 and 1.5% (w/w) of crude loading gave highest PF of 3.1. To enhance the partitioning of β-mannanase, four ionic liquids namely 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), 1-butyl-3-methylimidazolium bromide ([Bmim]Br), 1-ethyl-3-methylimidazolium bromide ([Emim]Br) was added into the system as an adjuvant. The highest recovery yield (89.65%) was obtained with addition of 3% (w/w) of [Bmim]BF4. The SDS-PAGE analysis revealed that the β-mannanase was successfully recovered in the top phase of ATPS with the molecular size of 36.7kDa. Therefore, ATPS demonstrated a simple and efficient approach for recovery and purification of β-mannanase from fermentation broth in one single-step strategy.
    Matched MeSH terms: Bacillus subtilis/enzymology*
  3. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AK, Radu S, et al.
    N Biotechnol, 2011 Oct;28(6):738-45.
    PMID: 21238617 DOI: 10.1016/j.nbt.2011.01.002
    Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzyme's enthalpy, entropy and Gibb's free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.
    Matched MeSH terms: Bacillus subtilis/enzymology*
  4. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
    Matched MeSH terms: Bacillus subtilis/enzymology*
  5. Olusesan AT, Azura LK, Abubakar F, Mohamed AK, Radu S, Manap MY, et al.
    J. Mol. Microbiol. Biotechnol., 2011 Apr;20(2):105-15.
    PMID: 21422764 DOI: 10.1159/000324535
    Bacillus strain NS 8, a lipase-producing bacterium isolated from a Malaysian hot spring, is able to tolerate a broad range of temperature and pH, which makes it beneficial for this study. It generated PCR products with molecular weight of 1,532 bp, and the 16S rRNA sequence analysis identified it as Bacillus subtilis with accession number AB110598. It showed a 71% similarity index with B. subtilis using Biolog Microstation System. Its lipase production was optimized using a shake flask system by changing the physical (agitation speed, pH and temperature) and nutritional (nitrogen, carbon and minerals) factors. The most suitable combination of the basal medium for lipase production was 2.5% olive oil (carbon), 1.5% peptone (nitrogen), 0.1% MgSO(4) (mineral) at an optimum temperature of 50°C, pH 7.5 and 150 rpm agitation, giving an enzyme yield of 4.23 U/ml. Statistical optimization using response surface methodology was carried out. An optimum lipase production of 5.67 U/ml was achieved when olive oil concentration of 3%, peptone 2%, MgSO(4)·7H(2)O 0.2% and an agitation rate of 200 rpm were combined. Lipase production was further carried out inside a 2-liter bioreactor, which yielded an enzyme activity of 14.5 U/ml after 15 h of incubation.
    Matched MeSH terms: Bacillus subtilis/enzymology*
  6. Tan LL, Musa A, Lee YH
    Sensors (Basel), 2011;11(10):9344-60.
    PMID: 22163699 DOI: 10.3390/s111009344
    The use of the enzyme alanine dehydrogenase (AlaDH) for the determination of ammonium ion (NH(4)(+)) usually requires the addition of pyruvate substrate and reduced nicotinamide adenine dinucleotide (NADH) simultaneously to effect the reaction. This addition of reagents is inconvenient when an enzyme biosensor based on AlaDH is used. To resolve the problem, a novel reagentless amperometric biosensor using a stacked methacrylic membrane system coated onto a screen-printed carbon paste electrode (SPE) for NH(4)(+) ion determination is described. A mixture of pyruvate and NADH was immobilized in low molecular weight poly(2-hydroxyethyl methacrylate) (pHEMA) membrane, which was then deposited over a photocured pHEMA membrane (photoHEMA) containing alanine dehydrogenase (AlaDH) enzyme. Due to the enzymatic reaction of AlaDH and the pyruvate substrate, NH(4)(+) was consumed in the process and thus the signal from the electrocatalytic oxidation of NADH at an applied potential of +0.55 V was proportional to the NH(4)(+) ion concentration under optimal conditions. The stacked methacrylate membranes responded rapidly and linearly to changes in NH(4)(+) ion concentrations between 10-100 mM, with a detection limit of 0.18 mM NH(4)(+) ion. The reproducibility of the amperometrical NH(4)(+) biosensor yielded low relative standard deviations between 1.4-4.9%. The stacked membrane biosensor has been successfully applied to the determination of NH(4)(+) ion in spiked river water samples without pretreatment. A good correlation was found between the analytical results for NH(4)(+) obtained from the biosensor and the Nessler spectrophotometric method.
    Matched MeSH terms: Bacillus subtilis/enzymology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links