Displaying all 5 publications

Abstract:
Sort:
  1. Oslan SNH, Tan JS, Saad MZ, Halim M, Mohamed MS, Ariff AB
    Bioprocess Biosyst Eng, 2019 Mar;42(3):355-365.
    PMID: 30483888 DOI: 10.1007/s00449-018-2040-y
    Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia, a fatal disease in cattle and buffaloes. For use as a vaccine in the treatment of HS disease, an efficient cultivation of attenuated gdhA derivative P. multocida B:2 (mutant) for mass production of viable cells is required. In this study, the role of amino acids and vitamins on the growth of this particular bacterium was investigated. Initially, three basal media (Brain-heart infusion, Terrific broth, and defined medium YDB) were assessed in terms of growth performance of P. multocida B:2. YDB medium was selected and redesigned to take into account the effects of amino acids (glutamic acid, cysteine, glycine, methionine, lysine, tyrosine, and histidine) and vitamins (vitamin B1, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and biotin). High viable cell number was largely affected by the availability of micronutrient components and macronutrients. Histidine was essential for the growth whereby a traceable amount (20 mM) was found to greatly enhance the growth of gdhA derivative P. multocida B:2 mutant (6.6 × 109 cfu/mL) by about 19 times as compared to control culture (3.5 × 108 cfu/mL). In addition, amongst the vitamins added, riboflavin exhibited the highest impact on the viability of gdhA derivative P. multocida B:2 mutant (5.3 × 109 cfu/mL). Though the combined histidine and riboflavin in the culture eventually did not promote the stacking impact on cell growth and cell viability, nonetheless, they were still essential and important in either growth medium or production medium.
    Matched MeSH terms: Bacterial Vaccines/genetics*
  2. Chin CY, Tan SC, Nathan S
    PMID: 22919676 DOI: 10.3389/fcimb.2012.00085
    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG(1), proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis.
    Matched MeSH terms: Bacterial Vaccines/genetics
  3. Barnard RT
    Expert Rev Vaccines, 2010 May;9(5):461-3.
    PMID: 20450319 DOI: 10.1586/erv.10.48
    The Recombinant Vaccines: Strategies for Candidate Discovery and Vaccine Delivery conference, organized by EuroSciCon, hosted a group of UK-based and international scientists from as far afield as Malaysia and Australia. Genomic analyses of pathogens and elucidation of mechanisms of pathogenesis has advanced candidate discovery and development of vaccines. Therefore, it was timely that this conference featured, in addition to detailed expositions of target selection and clinical trials, presentations on manufacturability, scale-up and delivery of vaccines. Ten talks were presented. This meeting report describes the key topics presented and the themes that emerged from this conference.
    Matched MeSH terms: Bacterial Vaccines/genetics*
  4. Garba B, Bahaman AR, Zakaria Z, Bejo SK, Mutalib AR, Bande F, et al.
    Microb Pathog, 2018 Nov;124:136-144.
    PMID: 30138761 DOI: 10.1016/j.micpath.2018.08.028
    Leptospirosis is a serious epidemic disease caused by pathogenic Leptospira species. The disease is endemic in most tropical and sub-tropical regions of the world. Currently, there is no effective polyvalent vaccine for prevention against most of the circulating serovars. Moreover, development of an efficient leptospiral vaccine capable of stimulating cross-protective immune responses against a wide range of serovars remains a daunting challenge. This, in part, is associated with the extensive diversity and variation of leptospiral serovars from region to region. In this study, a multi-epitope DNA vaccine encoding highly immunogenic epitopes from LipL32 and LipL41 was designed using in-silico approach. The DNA encoding antigenic epitopes was constructed from conserved pathogenic Leptospira genes (LipL32 and LipL41). Immunization of golden Syrian hamsters with the multi-epitope chimeric DNA vaccine resulted in the production of both agglutinating and neutralizing antibodies as evidence by MAT and in-vitro growth inhibition tests respectively. The antibodies produced reacted against eight different serovars and significantly reduced renal colonization following in vivo challenge. The vaccine was also able to significantly reduce renal colonization which is a very important factor responsible for persistence of leptospires among susceptible and reservoir animal hosts. In conclusion, the leptospiral multi-epitope chimeric DNA vaccine can serve as a potentially effective and safe vaccine against infection with different pathogenic leptospiral serovars.
    Matched MeSH terms: Bacterial Vaccines/genetics
  5. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P 
    Matched MeSH terms: Bacterial Vaccines/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links