Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Leow CY, Chuah C, Abdul Majeed AB, Mohd Nor N, Leow CH
    Methods Mol Biol, 2022;2414:17-35.
    PMID: 34784029 DOI: 10.1007/978-1-0716-1900-1_2
    Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.
    Matched MeSH terms: Bacterial Vaccines
  2. Tobuse AJ, Ang CW, Yeong KY
    Life Sci, 2022 Aug 01;302:120660.
    PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660
    With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
    Matched MeSH terms: Bacterial Vaccines
  3. Mohamed S, May Amelia TS, Abdullah Amirul AA, Abdul Wahid ME, Bhubalan K
    Biologicals, 2021 Jun;71:51-54.
    PMID: 33858743 DOI: 10.1016/j.biologicals.2021.03.002
    A natural biodegradable polymer, polyhydroxyalkanoate (PHA), was adjuvanted with a vaccine seed to observe the biomaterial's ability in enhancing an immune response in rats. The adjuvant potential of PHA was tested using the whole-killed Pasteurella multocida B:2 (PMB2) vaccine in Sprague Dawley (SD) rats to detect changes in serum immunoglobulin G (IgG) and immunoglobulin M (IgM) responses. A common PHA, poly(3-hydroxybutyrate) [P(3HB)], from Bacillus megaterium UMTKB-1 was constructed into microparticles using the solvent evaporation method. Twelve SD rats were divided into four treatment groups: 1) non-treatment as negative control, 2) P(3HB) adjuvant, 3) PMB2 vaccine, and 4) adjuvanted-P(3HB)/PMB2 vaccine groups, which were intramuscularly vaccinated twice. Immunoglobulins IgG and IgM levels were used as markers of the immune response induced by the adjuvanted-P(3HB)/PMB2 vaccine and analysed over an eight-week study period. The group vaccinated specifically with adjuvanted-P(3HB)/PMB2 vaccine had higher concentrations of immunoglobulins compared to other treatment groups, hence demonstrating the potential of the adjuvant to enhance immune response. Findings showed a need to delay the delivery of the second booster dose to determine the appropriate regime for the adjuvanted-P(3HB)/PMB2 vaccine.
    Matched MeSH terms: Bacterial Vaccines/immunology*
  4. Noraini O, Sabri MY, Siti-Zahrah A
    J Aquat Anim Health, 2013 Jun;25(2):142-8.
    PMID: 23724958 DOI: 10.1080/08997659.2013.781553
    An initial evaluation of spray vaccination was carried out with 60 hybrid Red Tilapia Oreochromis spp., divided into three groups that consisted of 10 fish per group with duplicates. The formalin-killed cells (FKCs) of Streptococcus agalactiae were administered once to group 1 by spray and once daily for five consecutive days to group 2. Group 3 remained as the untreated control group and was sprayed with normal saline. A booster was given twice to all the groups, once at the second week and again at the fourth week after the first vaccination. After this initial evaluation, a challenge study was conducted with 40 tilapia divided into two groups that consisted of 10 fish per group with duplicates. Group 1 was vaccinated with FKCs of S. agalactiae by a single spray administration while group 2 remained as the untreated control group. A booster was given twice using the same protocol as in the initial evaluation. After 6 weeks, fish from one of the duplicate tanks from each of groups 1 and 2 were challenged with pathogenic S. agalactiae by intraperitoneal (IP) injection, while fish in another tank were challenged through immersion. Based on the observations, serum immunoglobulin M (IgM) levels were significantly higher (P < 0.05) in the challenged fish than in the either the preexposed fish or the control group 1 week after the initial exposure. However, no significant differences (P > 0.05) were noted between challenged groups 1 and 2. In addition, no significant differences (P > 0.05) were observed between the frequencies of exposure. The mucus IgM level, however, remained high after each booster until the end of the 8-week study period. Meanwhile, serum IgM levels decreased after the challenge. A higher percentage of survival was noted for fish challenged through immersion (80%) compared with IP injection (70%). These results suggested that single spray exposure was able to induce IgM, which gave moderate to high protection during the challenge study.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*
  5. Chin CY, Tan SC, Nathan S
    PMID: 22919676 DOI: 10.3389/fcimb.2012.00085
    Burkholderia pseudomallei is resistant to a diverse group of antimicrobials including third generation cephalosporins whilst quinolones and aminoglycosides have no reliable effect. As therapeutic options are limited, development of more effective forms of immunotherapy is vital to avoid a fatal outcome. In an earlier study, we reported on the B. pseudomallei serine MprA protease, which is relatively stable over a wide pH and temperature range and digests physiological proteins. The present study was carried out to evaluate the immunogenicity and protective efficacy of the MprA as a potential vaccine candidate. In BALB/c mice immunized with recombinant MprA protease (smBpF4), a significantly high IgG titer was detectable. Isotyping studies revealed that the smBpF4-specific antibodies produced were predominantly IgG(1), proposing that immunization with smBpF4 triggered a Th2 immune response. Mice were immunized with smBpF4 and subsequently challenged with B. pseudomallei via the intraperitoneal route. Whilst control mice succumbed to the infection by day 9, smBpF4-immunized mice were protected against the lethal challenge and survived beyond 25 days post-infection. In conclusion, MprA is immunogenic in melioidosis patients whilst also eliciting a strong immune response upon bacterial challenge in mice and presents itself as a potential vaccine candidate for the treatment of melioidosis.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/genetics; Bacterial Vaccines/immunology*
  6. Barnard RT
    Expert Rev Vaccines, 2010 May;9(5):461-3.
    PMID: 20450319 DOI: 10.1586/erv.10.48
    The Recombinant Vaccines: Strategies for Candidate Discovery and Vaccine Delivery conference, organized by EuroSciCon, hosted a group of UK-based and international scientists from as far afield as Malaysia and Australia. Genomic analyses of pathogens and elucidation of mechanisms of pathogenesis has advanced candidate discovery and development of vaccines. Therefore, it was timely that this conference featured, in addition to detailed expositions of target selection and clinical trials, presentations on manufacturability, scale-up and delivery of vaccines. Ten talks were presented. This meeting report describes the key topics presented and the themes that emerged from this conference.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/genetics*; Bacterial Vaccines/immunology*
  7. Monir MS, Yusoff SBM, Zulperi ZBM, Hassim HBA, Mohamad A, Ngoo MSBMH, et al.
    BMC Vet Res, 2020 Jul 02;16(1):226.
    PMID: 32615969 DOI: 10.1186/s12917-020-02443-y
    BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses.

    RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P 

    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*; Bacterial Vaccines/standards*
  8. Garba B, Bahaman AR, Zakaria Z, Bejo SK, Mutalib AR, Bande F, et al.
    Microb Pathog, 2018 Nov;124:136-144.
    PMID: 30138761 DOI: 10.1016/j.micpath.2018.08.028
    Leptospirosis is a serious epidemic disease caused by pathogenic Leptospira species. The disease is endemic in most tropical and sub-tropical regions of the world. Currently, there is no effective polyvalent vaccine for prevention against most of the circulating serovars. Moreover, development of an efficient leptospiral vaccine capable of stimulating cross-protective immune responses against a wide range of serovars remains a daunting challenge. This, in part, is associated with the extensive diversity and variation of leptospiral serovars from region to region. In this study, a multi-epitope DNA vaccine encoding highly immunogenic epitopes from LipL32 and LipL41 was designed using in-silico approach. The DNA encoding antigenic epitopes was constructed from conserved pathogenic Leptospira genes (LipL32 and LipL41). Immunization of golden Syrian hamsters with the multi-epitope chimeric DNA vaccine resulted in the production of both agglutinating and neutralizing antibodies as evidence by MAT and in-vitro growth inhibition tests respectively. The antibodies produced reacted against eight different serovars and significantly reduced renal colonization following in vivo challenge. The vaccine was also able to significantly reduce renal colonization which is a very important factor responsible for persistence of leptospires among susceptible and reservoir animal hosts. In conclusion, the leptospiral multi-epitope chimeric DNA vaccine can serve as a potentially effective and safe vaccine against infection with different pathogenic leptospiral serovars.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/genetics; Bacterial Vaccines/immunology*
  9. Chandrasekaran S, Kennett L, Yeap PC, Muniandy N, Rani B, Mukkur TK
    Vet Microbiol, 1994 Aug 01;41(3):213-9.
    PMID: 7975147
    Two of the three buffaloes immunized with a non-adjuvanted broth bacterin were found to be protected against experimental challenge at 6 weeks but not at 3 months post-challenge. Similarly all buffaloes (4/4) immunized with alum-precipitated vaccine were protected at 6 months but only 1 of the 2 vaccinated animals were protected at 12 months post-immunization. On the other hand, buffaloes immunized with an oil adjuvant and a double emulsion vaccine were completely protected at 12 months post-immunization. Statistically significant differences between immunized versus non-immune animals became evident at 3 months post-immunization, although analysis of cumulative antibody titres of pre-challenge sera of vaccinated buffaloes surviving versus those succumbing to experimental challenge revealed significant by higher antibody titres in the former as compared to the latter group. These results suggested that there was a relationship between ELISA antibody titres and active protection in buffaloes. There also appeared to be a relationship between cutaneous delayed-type hypersensitivity and active protection in buffaloes. Preliminary analysis of the antibody isotype distribution in the pre-challenge sera of 2 buffaloes vaccinated with the oil adjuvant vaccine revealed predominance of IgG1 and IgG2 subclasses whose role in protection against haemorrhagic septicaemia was not eludicated.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage*
  10. Chandrasekaran S, Hizat K, Saad Z, Johara MY, Yeap PC
    Br. Vet. J., 1991 Sep-Oct;147(5):437-43.
    PMID: 1959015
    The effectiveness of an oil adjuvant vaccine (OAV) incorporating locally isolated strains of Pasteurella haemolytica type 7 and Pasteurella multocida types A and D was compared with that of Carovax (Wellcome Laboratories) in imported cross-bred lambs. The criterion of efficacy was the ability of the vaccines to reduce the extent of pneumonic lesions in vaccinated as against unvaccinated control lambs. The OAV produced at this Institute significantly reduced the lung lesions at P less than 0.05 level compared with its control group when challenged with P. haemolytica alone. However, the vaccine was unsatisfactory against P. multocida or combined P. multocida P. haemolytica challenge. Carovax did not produce any significant reduction in the lung lesions caused by P. haemolytica and/or P. multocida.
    Matched MeSH terms: Bacterial Vaccines*
  11. Sukumaran KD
    PMID: 3064325
    Matched MeSH terms: Bacterial Vaccines/isolation & purification
  12. Monir MS, Yusoff MSM, Zulperi ZM, Hassim HA, Zamri-Saad M, Amal MNA, et al.
    Fish Shellfish Immunol, 2021 Jun;113:162-175.
    PMID: 33857622 DOI: 10.1016/j.fsi.2021.04.006
    Streptococcosis and motile aeromonad septicemia (MAS) are well-known diseases in tilapia culture, which cause mass mortality with significant economic losses. The development of feed-based bivalent vaccines in controlling these diseases has been initiated, however, the mechanisms of immunities and cross-protection in fish remain unclear. This study was conducted to assess the immuno-protective as well as the cross-protective efficacy of a newly developed feed-based bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia. A total of five groups of fish were vaccinated orally through two different techniques; bivalent vaccine (inactivated Streptococcus iniae and Aeromonas hydrophila) sprayed on feed pellets (BS group); bivalent vaccine (inactivated S. iniae and A. hydrophila) incorporated in feed (BI group); monovalent inactivated S. iniae and A. hydrophila vaccine separately incorporated into feed as monovalent S. iniae (MS group) and monovalent A. hydrophila (MA group); and control group (without vaccine). The feed-based vaccine was delivered orally at 5% of body weight for five consecutive days. The booster doses were given in the same manner on weeks 2 and 6. Serum and skin mucus samples were collected to assess the IgM responses using indirect ELISA. The first administration of the feed-based vaccine stimulated the IgM levels that lasted until week 3, while the second booster ensured that the IgM levels remained high for a period of 16 weeks in the BI, MS and MA groups. The BI group developed a strong and significantly (P 
    Matched MeSH terms: Bacterial Vaccines/immunology*
  13. Oslan SNH, Tan JS, Saad MZ, Halim M, Mohamed MS, Ariff AB
    Bioprocess Biosyst Eng, 2019 Mar;42(3):355-365.
    PMID: 30483888 DOI: 10.1007/s00449-018-2040-y
    Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia, a fatal disease in cattle and buffaloes. For use as a vaccine in the treatment of HS disease, an efficient cultivation of attenuated gdhA derivative P. multocida B:2 (mutant) for mass production of viable cells is required. In this study, the role of amino acids and vitamins on the growth of this particular bacterium was investigated. Initially, three basal media (Brain-heart infusion, Terrific broth, and defined medium YDB) were assessed in terms of growth performance of P. multocida B:2. YDB medium was selected and redesigned to take into account the effects of amino acids (glutamic acid, cysteine, glycine, methionine, lysine, tyrosine, and histidine) and vitamins (vitamin B1, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and biotin). High viable cell number was largely affected by the availability of micronutrient components and macronutrients. Histidine was essential for the growth whereby a traceable amount (20 mM) was found to greatly enhance the growth of gdhA derivative P. multocida B:2 mutant (6.6 × 109 cfu/mL) by about 19 times as compared to control culture (3.5 × 108 cfu/mL). In addition, amongst the vitamins added, riboflavin exhibited the highest impact on the viability of gdhA derivative P. multocida B:2 mutant (5.3 × 109 cfu/mL). Though the combined histidine and riboflavin in the culture eventually did not promote the stacking impact on cell growth and cell viability, nonetheless, they were still essential and important in either growth medium or production medium.
    Matched MeSH terms: Bacterial Vaccines/genetics*
  14. Muniandy N, Love DN, Mukkur TK
    Comp Immunol Microbiol Infect Dis, 1998 Oct;21(4):257-79.
    PMID: 9775357
    Purified lipopolysaccharide (LPS) of Pasteurella multocida type 6:B, while toxic at higher doses, was protective at lower dose levels against experimentally-induced pasteurellosis in mice. However, the observed protection was abrogated if such LPS was digested with proteinase K prior to use in immunisation. The O-antigen polysaccharide side-chain (OS) of LPS did not appear to contribute to the observed protection as judged by the fact that immunisation of mice with purified OS or OS-protein conjugates, all of which were nontoxic, failed to confer protection against challenge with homologous virulent organisms. This was despite generation of significant levels of OS-specific antibodies, predominantly either of the IgM or IgG isotypes, in immunised mice.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology
  15. Hambali IU, Bhutto KR, Jesse FFA, Lawan A, Odhah MN, Wahid AH, et al.
    Microb Pathog, 2018 Nov;124:101-105.
    PMID: 30114463 DOI: 10.1016/j.micpath.2018.08.017
    Mastitis is an inflammatory condition of the udder that occurs as a result of the release of leucocytes into the udder in a response to bacterial invasion. The major causes of mastitis are an array of gram positive and negative bacteria, however, algae, virus, fungi, mechanical or thermal injury to the gland have also been identified as possible causes. Mastitis vaccines are yet to be developed using Malaysian local isolate of bacteria. The objective of the present experimental trial was to develop a monovalent vaccine against mastitis using S. aureus of Malaysian isolate and to evaluate the clinical responses such as temperature, respiratory rates and heart rates in vaccinated cows. S. aureus is a major causative bacteria in clinical and subclinical types of mastitis in cows. Four concentrations of the bacterin (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were prepared using Aluminium potassium sulfate adjuvant. Thirty cows were grouped into four treatment groups (B, C, D and E) with a fifth group as control (A). These groups were vaccinated intramuscularly(IM) with the prepared monovalent vaccine and its influence on the vital signs were intermittently measured. The mean of rectal temperature was significantly different (p˂ 0.05) at 0hr Post Vaccination [1]" in groups D and E (39.5 ± 0.15 °C and 39.4 ± 0.15 °C respectively) and at 3 h PV in groups C, D and E (39.8 ± 0.14 °C, 39.9 ± 0.14 °C and 40.3 ± 0.14 °C respectively) compared to the control group. This indicated a sharp increased rectal temperatures between 0hr and 3 h PV in groups C, D and E which later declined at 24 h PV. The mean of rectal temperature of group E was significantly different (p˂ 0.05) at weeks 1 and 2 PV (39.87 ± 0.19 °C and 39.80 ± 0.18 °C respectively) compared to the control group. The mean of heart rate was significantly different (p˂ 0.05) at week 1 PV in groups D and E (83.0 ± 3.8 beats/minute and 80.0 ± 3.8 °C respectively) compared to control. A trending decrease was however observed in heart rates of group E from weeks through 4 PV and in group D from weeks 1 through 3 PV. The mean of respiratory rates was significantly different (p˂ 0.05) at week 3 PV in group B and D (31.0 ± 1.2 breaths/minute and 28.0 ± 1.2 breaths/minute) compared to control. In conclusion, this study highlights responses of these vital signs due to vaccination against S. aureus causing mastitis in cows. To the best of our knowledge the findings of this study adds value to the shallow literature on vital signs alterations in cows vaccinated against mastitis as elevated levels of temperature and heart rates of group D and E indicated obvious response.
    Matched MeSH terms: Bacterial Vaccines/administration & dosage; Bacterial Vaccines/immunology*
  16. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P 
    Matched MeSH terms: Bacterial Vaccines/administration & dosage*; Bacterial Vaccines/genetics; Bacterial Vaccines/immunology
  17. Thung, T. Y., Chin, Y. Z., Najwa, M. S., Ubong, A., New, C. Y., Ramzi, O. S. B., et al.
    MyJurnal
    Salmonellosis is an important public health problem and causes large economic losses in the poultry industry. The emergence of molecular technology has opened various possibilities for constructing tailor-made proteins, particularly protein E from bacteriophage PhiX174 for the
    production of bacterial ghosts (BGs) applied in vaccines purposes. In the present study, the plamdaPRcI-Elysis plasmid carrying the PhiX174 lysis gene E and thermo-sensitive lamda PR-cl857 regulatory system was constructed. Two Salmonella Enteritidis (SE-2 and SE- 4) and one Salmonella Typhimurium (ST-4) isolates were able to uptake the lysis plasmid via electrotransformation. Generation of ghosts was enhanced by increasing the incubation temperature up to 42˚C. Cell viability of SE-2, SE-4 and ST-4 decreased ranging in log 2.7 to log 4.1 cycles after lysis induction. Moreover, SE-2 and SE-4 exhibited the earliest reduction of CFU after 3 h of incubation. Our results may provide a promising avenue for the development of Salmonella BGs vaccines.
    Matched MeSH terms: Bacterial Vaccines
  18. Goa Y, Du JG, Jirapattharasate C, Galon E, Ji SW, Ran ZG, et al.
    Trop Biomed, 2023 Dec 01;40(4):400-405.
    PMID: 38308826 DOI: 10.47665/tb.40.4.004
    Beta toxin (CPB) is a lethal toxin and plays a key role in enterotoxemia of ruminants caused by Clostridium perfringens type C strain. The existing vaccines based on crude CPB need time-consuming detoxification and difficult quality control steps. In this study, we synthesized the rCPBm4 of C. perfringens type C strain and small ubiquitin-like modifier (SUMO)-tag CPBm4 (rSUMO-CPBm4) by introducing four amino acid substitutions: R212E, Y266A, L268G, and W275A. Compared with rCPBm4, rSUMO-CPBm4 was expressed with higher solubility in Escherichia coli BL21 (DE3). Neither rCPBm4 nor rSUMO-CPBm4 was lethal to mice. Although rCPBm4 and rSUMO-CPBm4 were reactogenic with polyclonal antibodies against crude CPB, rabbits vaccinated with rSUMO-CPBm4 developed significant levels of toxin-neutralizing antibody (TNA) titers that conferred protection against crude toxin challenge. These data suggest that genetically detoxified rSUMO-CPBm4 is a promising subunit vaccine candidate for C. perfringens type C beta enterotoxemia.
    Matched MeSH terms: Bacterial Vaccines
  19. Su YC, Wan KL, Mohamed R, Nathan S
    Vaccine, 2010 Jul 12;28(31):5005-11.
    PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022
    Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
    Matched MeSH terms: Bacterial Vaccines/immunology*
  20. Hara Y, Mohamed R, Nathan S
    PLoS One, 2009 Aug 05;4(8):e6496.
    PMID: 19654871 DOI: 10.1371/journal.pone.0006496
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium's surface and secreted proteins are currently being evaluated as vaccine candidates.

    METHODOLOGY/PRINCIPAL FINDINGS: With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1x10(6) colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

    CONCLUSIONS/SIGNIFICANCE: We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.

    Matched MeSH terms: Bacterial Vaccines*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links