Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Hiew BYZ, Lee LY, Lee XJ, Thangalazhy-Gopakumar S, Gan S
    Environ Sci Pollut Res Int, 2021 Aug;28(30):40608-40622.
    PMID: 32601866 DOI: 10.1007/s11356-020-09594-3
    Heavy metals released by various industries are among the major pollutants found in water resources. In this research, biosorption technique was employed to remove cadmium (Cd2+) from an aqueous system using a novel biosorbent developed from okara waste (OW), a residue from soya bean-based food and beverage processing. Characterisation results revealed that the OW biosorbent contained functional groups such as hydroxyl-, carboxyl- and sulphur-based functional groups, and the surface of the biosorbent was rough with multiple fissures which might be the binding sites for the pollutant. The effects of dosage, solution pH, initial Cd2+ concentration, temperature and contact time were investigated using batch adsorption mode. The biosorption equilibrium and kinetic were best described by the Langmuir and Elovich models, respectively. The maximum biosorption capacities predicted by the Langmuir model were 10.91-14.80 mg/g at 30-70 °C, and the biosorption process was favourable as evident from 0 < RL < 1. The uptake of Cd2+ by the OW biosorbent was spontaneous and endothermic. The plausible biosorption mechanisms of this study could be ionic exchange, hydrogen bonding and electrostatic interactions. The Cd2+ loaded OW biosorbent could be regenerated using 0.4 M of HCl solution and regeneration was studied for 4 adsorption-desorption cycles. The present investigation supported that OW can be reused as a value-added biosorbent product for the removal of Cd2+ from the contaminated water.
    Matched MeSH terms: Cadmium/analysis
  2. Rivai IF, Koyama H, Suzuki S
    Bull Environ Contam Toxicol, 1990 Jun;44(6):910-6.
    PMID: 2354269
    Matched MeSH terms: Cadmium/analysis*
  3. Saheed IO, Yusof ENM, Oh WD, Hanafiah MAKM, Suah FBM
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124798.
    PMID: 37178882 DOI: 10.1016/j.ijbiomac.2023.124798
    Adsorption efficiency of a duo-material blend featuring the fabrication of modified chitosan adsorbents (powder (C-emimAc), bead (CB-emimAc) and sponge (CS-emimAc)) for the removal of Cd(II) from aqueous solution was investigated. The chitosan@activated carbon (Ch/AC) blend was developed in a green ionic solvent, 1-ethyl-3-methyl imidazolium acetate (EmimAc) and its characteristics was examined using FTIR, SEM, EDX, BET and TGA. The possible mechanism of interaction between the composites and Cd(II) was also predicted using the density functional theory (DFT) analysis. The interactions of various blend forms (C-emimAc, CB-emimAc and CS-emimAc) with Cd(II) gave better adsorption at pH 6. The composites also present excellent chemical stability in both acidic and basic conditions. The monolayer adsorption capacities obtained (under the condition 20 mg/L [Cd], adsorbent dosage 5 mg, contact time 1 h) for the CB-emimAc (84.75 mg/g) > C-emimAc (72.99 mg/g) > CS-emimAc (55.25 mg/g), as this was supported by their order of increasing BET surface area (CB-emimAc (120.1 m2/g) > C-emimAc (67.4 m2/g) > CS-emimAc (35.3 m2/g)). The feasible adsorption interactions between Cd(II) and Ch/AC occurs through the O-H and N-H groups of the composites, as supported by DFT analysis in which an electrostatic interactions was predicted as the dominant force. The interaction energy (-1309.35 eV) calculated via DFT shows that the Ch/AC with amino (-NH) and hydroxyl (-OH) groups are more effective with four significant electrostatic interactions with the Cd(II) ion. The various form of Ch/AC composites developed in EmimAc possess good adsorption capacity and stability for the adsorption Cd(II).
    Matched MeSH terms: Cadmium/analysis
  4. Tek PPY, Ng CC
    Environ Monit Assess, 2024 Mar 19;196(4):382.
    PMID: 38502262 DOI: 10.1007/s10661-024-12508-2
    The accumulation of potentially toxic elements (PTEs) has raised public awareness due to harmful contamination to both human and marine creatures. This study was designed to determine the concentration of copper (Cu), zinc (Zn), cadmium (Cd), and nickel (Ni) in the intestine, kidney, muscle, gill, and liver tissues of local commercial edible fish, fourfinger threadfin (Eleutheronema tetradactylum), and black pomfret (Parastromateus niger) collected from Morib (M) and Kuala Selangor (KS). Among the studied PTEs, Cu and Zn were essential elements to regulate body metabolism with certain dosages required while Cd and Ni were considered as non-essential elements that posed chronic and carcinogenic risk. The concentration of PTEs in fish tissue samples was analyzed using flame atomic absorption spectrometry (F-AAS). By comparing the concentration of PTEs in fish tissues as a bioindicator, the environmental risk of Morib was more serious than Kuala Selangor because both fish species collected from Morib resulted in a higher PTEs concentration. For an average 62 kg adult with a fish ingestion rate (FIR) of 0.16 kg/person/day in Malaysia, the estimated weekly intake (EWI) of Cd from the consumption of E. tetradactylum (M: 0.0135 mg/kg; KS: 0.0134 mg/kg) and P. niger (M: 0.0140 mg/kg; KS: 0.0132 mg/kg) had exceeded the provisional tolerable weekly intake (Cd: 0.007 mg/kg) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference dose (ORD) values of Cd (0.001 mg/kg/day) as provided by the United States Environmental Protection Agency (USEPA) regional screening level, thus it posed chronic risks for daily basis consumption. Besides, the value of the carcinogenic risk of Cd (0.7-3 to 0.8-3) and Ni (0.5-3 to 0.6-3) were in between the acceptable range (10-6 to 10-4) of the health index that indicates a relatively low possibility cancer occurrence to the consumers in both Morib and Kuala Selangor. This study recommended FIR to be 0.80 kg/person/day to reduce the possibility of posing chronic and carcinogenic risks while at the same time obtaining the essential nutrients from the fish.
    Matched MeSH terms: Cadmium/analysis
  5. Hossen MF, Hamdan S, Rahman MR
    ScientificWorldJournal, 2014;2014:924360.
    PMID: 25538965 DOI: 10.1155/2014/924360
    The concentrations were ranged from 1.35 ± 0.16 to 2.22 ± 0.34 µg/g (dry weight) and 2.65 ± 0.34 to 4.36 ± 0.53 µg/g (dry weight) for Cd and Pb, respectively, in blood cockle Anadara granosa from four sites of Sabang River, namely, Kampung Sambir, Kampung Tambirat, Beliong Temple, and Kampung Tanjung Apong, which are located at Asajaya, Sarawak, Malaysia. All values exceeded safety limits set by Malaysian Food Regulation (1985). It may be the cause of serious human health problems after long term consumption. Thus, consumer should have consciousness about such type of seafood from mentioned sites and need further investigation.
    Matched MeSH terms: Cadmium/analysis*
  6. Janaydeh M, Ismail A, Zulkifli SZ, Omar H
    Environ Monit Assess, 2019 Sep 16;191(10):637.
    PMID: 31529162 DOI: 10.1007/s10661-019-7755-y
    Cadmium (Cd) and lead (Pb) are ubiquitous metals widely distributed in the environment, resulting in toxic health effects. This project aims to evaluate Pb and Cd as toxic elements in 15 different tobacco cigarette brands produced and/or sold in Selangor state, Peninsular Malaysia. The concentrations of Pb and Cd in all tobacco brands tested in this study were determined using the air-acetylene flame atomic absorption spectrophotometer (AAS). On average, the concentrations of Pb and Cd in different tobacco brand samples ranged from 3.05 and 0.80 μg/g dw, respectively. The results indicate that assessment mean values of Pb inhaled from smoking one packet of 20 cigarettes were in the range of 1.55-3.51 μg. Furthermore, the concentration of Cd inhaled per packet of cigarettes (20 sticks) is estimated to be 0.04-0.36 μg. However, there was a significant difference in the concentrations of Pb and Cd between the different brands of tobacco cigarettes, among cigarette prices (cheap versus expensive) of tobacco brands. In conclusion, cigarette smokers in Selangor, Malaysia, are heavily exposed to Pb and Cd, and such exposure could adversely affect their health in the long term. The impact of toxic heavy metals on smokers in this state would be an area for future research.
    Matched MeSH terms: Cadmium/analysis*
  7. Babji AS, Embong MS, Woon WW
    Bull Environ Contam Toxicol, 1979 Dec;23(6):830-6.
    PMID: 519067
    Matched MeSH terms: Cadmium/analysis
  8. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
    Matched MeSH terms: Cadmium/analysis
  9. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Cadmium/analysis
  10. Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, et al.
    Environ Sci Pollut Res Int, 2022 Aug;29(40):61065-61079.
    PMID: 35435558 DOI: 10.1007/s11356-022-19974-6
    Improper treatment during recycling of e-waste materials by means of open burning is on the rise which has led to an increase in air pollution. This study looked at heavy metal concentrations, concentrations in relation to threshold values, and assessments of risk for noncarcinogenic and cancer risk threat. The Microwave Plasma-Atomic Emission Spectrometry (MP-AES 4210) series instrument of Agilent Technology, United States of America (USA), was used in analyzing heavy metal (Cd, Cu, and Pb) concentrations. The result of the analysis of the Kuka Bulukiya treatment point revealed that Pb has the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per million (PPM), and Cd 0.0042 ppm. The mean concentration at PRP Gidan Ruwa for Cd was found to be 0.0059 ppm, Cu 0.0363 ppm, and Pb 0.049 ppm. The result of the adult and children population calculated shows that the hazard quotient (HQ) and hazard index (HI) values are not up to 1 in all the pathways (inhalation, ingestion, and dermal) at both treatment points (1.2 ˟ 10-4 and 9.8 ˟ 10-5) and (6.4 ˟ 10-4 and 5.9 ˟ 10-4), respectively. The cancer risk for Kuka Bulukiya 6 ˟ 10-10 and PRP G/Ruwa 5 ˟ 10-10 for adults and 7 ˟ 10-10 and 4 ˟ 10-10 for children were both lower than the threshold set for cancer risk by the United States Environmental Protection Agency (USEPA). This meant that both adults and children were not at risk of cancer and noncarcinogenic threat based on the assessment in this study. The study concluded that informal e-waste burning has substantially helped in the relatively high levels of air pollution identified in the treatment points and in turn posed environmental and public health concerns to people around the area. This study recommends that samples of the vegetable products at the PRP G/Ruwa treatment point should be investigated immediately and adequate restrictions and regulations should be enacted and enforced in order to safeguard the environment and the populace. There is need for caution from the authorities to avert the possible implications (e-waste extractors and the public) of being affected with noncarcinogenic or carcinogenic ailments over time.
    Matched MeSH terms: Cadmium/analysis
  11. Iqbal F, Wilson R, Ayub Q, Song BK, Krzeminska-Ahmedzai U, Talei A, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(13):35715-35726.
    PMID: 36536201 DOI: 10.1007/s11356-022-24712-z
    Urban-dwelling birds can be useful biomonitors to assess the impact of the urbanisation on both public and wildlife health. Widely distributed urban bird species, the House crow, was studied for heavy metal accumulation levels from nine cities of South Asia, Southeast Asia and Africa that border the Indian Ocean. Feathers were spectroscopically investigated for the deposition of ten heavy metals, i.e. As, Zn, Pb, Cd, Ni, iron Fe, Mn, Cr, Cu and Li. Fe and Zn were found to be the most prevalent metals in all sites. Measured concentrations of Pb (4.38-14.77 mg kg-1) overall, and Fe (935.66 mg kg-1) and Cu (67.17 mg kg-1) at some studied sites were above the toxicity levels reported lethal in avian toxicological studies. Multivariate analysis and linear models supported geographical location as a significant predictor for the level of most of the metals. Zn and Cu, generally and Pb, Cd, Mn, Cr at some sites exhibited potential bioaccumulation from surrounding environments. Inter-species comparisons strengthen the inference that the House crow is a reliable bioindicator species for the qualitative assessment of local urban environmental pollution and could be a useful tool for inter-regional monitoring programs.
    Matched MeSH terms: Cadmium/analysis
  12. Ramli NAS, Roslan NA, Abdullah F, Bilal B, Ghazali R, Abd Razak RA, et al.
    PMID: 37682685 DOI: 10.1080/19440049.2023.2255290
    Esters of 2- and 3-monochloropropanediol (2-MCPDE, 3-MCPDE) and glycidol (GE) are regarded as process contaminants that are found in refined vegetable oils and oil-based foods. Since glycerol is produced during fat splitting, saponification and biodiesel production, it is important to have methods for determining contaminants that might be formed during these processes. Due to the use of glycerol as a food additive, data on the presence of compounds of toxicological concern, including 3-MCPD, are of interest. This study focuses on modifying the indirect analysis of 2-MCPDE, 3-MCPDE and GE using GC-MS based on the AOCS Official Method Cd 29a-13, validating the modified method, and quantifying 2-MCPDE, 3-MCPDE and GE in glycerol. The AOCS Cd 29a-13 method was modified at the initial stage of sample preparation in which the targeted esters were extracted from glycerol by vortex-assisted extraction before sample analysis. This modification was performed based on the polarity of all compounds involved. The calibration functions for all analytes were fitted to linear regression with R2 above 0.99. Limits of detection (LOD) 0.02, 0.01 and 0.02 mg kg-1 were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Spiked glycerol with 3-MCPDE and 2-MCPDE (0.25, 0.51 and 1.01 mg kg-1) and GE (0.58, 1.16 and 2.32 mg kg-1) were used for recovery and precision measurements. Recoveries of 100-108%, 101-103%, and 93-99% were obtained for 2-MCPDE, 3-MCPDE and GE, respectively. Acceptable precision levels with relative standard deviations ranged from 3.3% to 8.3% were obtained for repeatability and intermediate precision. The validated method was successfully applied for the analysis of the target compounds in refined glycerol from commercial plants, which showed that 2-MCPDE, 3-MCPDE and GE levels in the analysed samples were below the detection limit.
    Matched MeSH terms: Cadmium/analysis
  13. Navaretnam R, Hassan HN, Isa NM, Aris AZ, Looi LJ
    Environ Sci Pollut Res Int, 2023 Aug;30(37):87695-87720.
    PMID: 37423935 DOI: 10.1007/s11356-023-28459-z
    Rice is a predominant staple food in many countries. It is a great source of energy but can also accumulate toxic and trace metal(loid)s from the environment and pose serious health hazards to consumers if overdosed. This study aims to determine the concentration of toxic metal(loid)s [arsenic (As), cadmium (Cd), nickel (Ni)] and essential metal(loid)s [iron (Fe), selenium (Se), copper (Cu), chromium (Cr), cobalt (Co)] in various types of commercially available rice (basmati, glutinous, brown, local whites, and fragrant rice) in Malaysia, and to assess the potential human health risk. Rice samples were digested following the USEPA 3050B acid digestion method and the concentrations of metal(loid)s were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS). Mean concentrations (mg/kg as dry weight) of metal(loid)s (n=45) across all rice types were found in the order of Fe (41.37)>Cu (6.51)>Cr (1.91)>Ni (0.38)>As (0.35)>Se (0.07)>Cd (0.03)>Co (0.02). Thirty-three percent and none of the rice samples surpassed, respectively, the FAO/WHO recommended limits of As and Cd. This study revealed that rice could be a primary exposure pathway to toxic metal(loid)s, leading to either noncarcinogenic or carcinogenic health problems. The non-carcinogenic health risk was mainly associated with As which contributed 63% to the hazard index followed by Cr (34%), Cd (2%), and Ni (1%). The carcinogenic risk to adults was high (>10-4) for As, Cr, Cd, and Ni. The cancer risk (CR) for each element was 5 to 8 times higher than the upper limit of cancer risk for an environmental carcinogen (<10-4). The findings from this study could provide the metal(loid)s pollution status of various types of rice which are beneficial to relevant authorities in addressing food safety and security-related issues.
    Matched MeSH terms: Cadmium/analysis
  14. Gantayat RR, Mohan Viswanathan P, Ramasamy N, Sabarathinam C
    Environ Sci Pollut Res Int, 2023 Aug;30(40):92692-92719.
    PMID: 37495801 DOI: 10.1007/s11356-023-28596-5
    A comprehensive geochemical study was conducted in the Sibuti River estuary by considering water, suspended solids (SS), and sediment samples from 36 stations during southwest monsoon (SWM) and northeast monsoon (NEM). In this study, the distribution of in situ parameters, major ions, nutrients, trace metals, and isotopes (δD, δ18O) were analyzed in water samples, whereas sediments and SS were studied for trace metals. The distribution revealed that suspended solids were the major carrier of Cd, Zn, and Mn, whereas sediments worked as a major source of Co, Cr, Ba, Se, Cu, and Pb. Na-Cl water type and ion exchange dominated the lower part of the estuary during both seasons. However, the mixed mechanism of Ca-Cl, Ca-Mg-Cl, and higher weathering indicated reverse ion exchange in the intermediate and upper parts of the estuary. Isotopic signatures of δD and δ18O in estuarine water indicate that the precipitation over the Limbang area dominates during SWM, whereas higher evaporation was confirmed during NEM. The factor analysis revealed that seawater influence in the estuary majority controlled the water chemistry irrespective of seasons. Major ions were mainly regulated by the tidal influence during the low flow time of the river (SWM), whereas the mixing mechanism of weathering and seawater controlled the concentrations during NEM. Nutrients such as NO3, SO42-, NH3, and NH4+ mainly originated from the agricultural fields and nitrification along with ammonification were responsible for the recycling of such nutrients. Trace metals except Cd were found to be geogenic in nature and originating mainly from the oxidation of pyrites present in the sandstone and mudstones of the Sibuti Formation. Redox condition was catalyzed by microorganisms near the river mouth, whereas Al-oxyhydroxides and Fe-oxyhydroxides complexes in the intermediate and upper part under oxygenated conditions controlled the absorption of metals. Overall, the estuary was found to be absorptive in nature due to ideal pH conditions and was confirmed by the saturation index (SI) of minerals.
    Matched MeSH terms: Cadmium/analysis
  15. Alkarkhi AF, Ismail N, Ahmed A, Easa Am
    Environ Monit Assess, 2009 Jun;153(1-4):179-85.
    PMID: 18504644 DOI: 10.1007/s10661-008-0347-x
    Statistical analysis of heavy metal concentrations in sediment was studied to understand the interrelationship between different parameters and also to identify probable source component in order to explain the pollution status of selected estuaries. Concentrations of heavy metals (Cu, Zn, Cd, Fe, Pb, Cr, Hg and Mn) were analyzed in sediments from Juru and Jejawi Estuaries in Malaysia with ten sampling points of each estuary. The results of multivariate statistical techniques showed that the two regions have different characteristics in terms of heavy metals selected and indicates that each region receives pollution from different sources. The results also showed that Fe, Mn, Cd, Hg, and Cu are responsible for large spatial variations explaining 51.15% of the total variance, whilst Zn and Pb explain only 18.93 of the total variance. This study illustrates the usefulness of multivariate statistical techniques for evaluation and interpretation of large complex data sets to get better information about the heavy metal concentrations and design of monitoring network.
    Matched MeSH terms: Cadmium/analysis
  16. Nordin N, Selamat J
    PMID: 24786623 DOI: 10.1080/19393210.2012.721140
    As, Cd, Pb and Hg were analysed in commonly consumed spices and herbs in Malaysia. The range of As, Cd, Pb and Hg content was 0.24-2.54, 0.23-8.07, 1.54-8.94 and 0.06-0.52 µg g(-1), respectively. The highest concentration of Cd, Pb and Hg in spices and herbs exceeded the maximum permitted proportion, which are 1, 2 and 0.05 µg g(-1), respectively. This study suggests further monitoring of Cd, Pb and Hg on daily consumption of spices and herbs and its toxicological implication for consumers since only the amount of As was lower than the permitted concentration.
    Matched MeSH terms: Cadmium/analysis
  17. Abdullah P, Abdullah SMS, Jaafar O, Mahmud M, Khalik WMAWM
    Mar Pollut Bull, 2015 Dec 15;101(1):378-385.
    PMID: 26476861 DOI: 10.1016/j.marpolbul.2015.10.014
    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed.
    Matched MeSH terms: Cadmium/analysis
  18. Aich K, Goswami S, Das S, Mukhopadhyay CD, Quah CK, Fun HK
    Inorg Chem, 2015 Aug 3;54(15):7309-15.
    PMID: 26192906 DOI: 10.1021/acs.inorgchem.5b00784
    On the basis of the Förster resonance energy transfer mechanism between rhodamine and quinoline-benzothiazole conjugated dyad, a new colorimetric as well as fluorescence ratiometric probe was synthesized for the selective detection of Cd(2+). The complex formation of the probe with Cd(2+) was confirmed through Cd(2+)-bound single-crystal structure. Capability of the probe as imaging agent to detect the cellular uptake of Cd(2+) was demonstrated here using living RAW cells.
    Matched MeSH terms: Cadmium/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links